Optimization of Neural Networks with an Explicit Regularization: Generalized Gauss-Newton Method

Adeyemi D. Adeoye 1 , Philipp Christian Petersen 2 , Alberto Bemporad 1

¹IMT School for Advanced Studies Lucca, Italy, ²Faculty of Mathematics, University of Vienna, Austria

SCHOOL FOR ADVANCED STUDIES LUCCA

Neural Network Training

Let n= number of hidden neurons, $n_0=$ input dimension. The one-hidden layer NN is:

$$\mathbb{R}^{n_0}
i x\mapsto \Phi(x; heta) riangleq\kappa(n)\sum_{i=1}^n v_iarrho(u_ix)$$

The training task: Find θ minimizing

$$\min_{ heta \in \mathbb{R}^p} \mathcal{L}(heta) riangleq rac{1}{m} \sum_{i=1}^m \ell(\Phi(x_i; heta), y_i) + g(heta) \ \hat{R}_s(\Phi)$$

g is a convex regularizer

Setup & key assumptions

$$egin{aligned} Q_t &=
abla_{\Phi_t}^2 \hat{R}_s(\Phi_t)$$
, $e_t =
abla_{\Phi_t} \hat{R}_s(\Phi_t)$, $H_t =
abla^2 g(heta_t)$, $J_t = (
abla_{ heta} \Phi(x_1, heta_t), \dots,
abla_{ heta} \Phi(x_m, heta_t))^ op \end{aligned}$

Regularized GGN iterations: augment Q_t , e_t and J_t , resp. by 0, 1 and $\nabla g(\theta_t)$ in appropriate dimensions; denote by \hat{Q}_t , \hat{e}_t and \hat{J}_t , resp.

$$heta_{t+1} = heta_t - lpha_t (\hat{J}_t^{ op} \hat{Q}_t \hat{J}_t + H_t)^{-1} \hat{J}_t^{ op} \hat{e}_t$$

where α_t are step sizes (or *learning rates*)

Convenient form for overparameterized models:

$$\theta_{t+1} = \theta_t - \alpha_t H_t^{-1} \hat{J}_t^{\top} (I + \hat{Q}_t \hat{J}_t H_t^{-1} \hat{J}_t^{\top})^{-1} \hat{e}_t$$

- ρ is twice differentiable, Lipschitz, and smooth
- g is thrice differentiable and (M_g, ν) -GSC (generalized self-concordant): $\forall u, v \in \mathbb{R}^p$, $|\langle \nabla^3 g(x)[v]u, u \rangle| \leq M_g \|u\|_x^2 \|v\|_x^{\nu-2} \|v\|^{3-\nu}$
- \hat{R}_s is γ_R -strongly convex, and has upper-bounded gradients and Hessian; g, \hat{Q}_t and \hat{e}_t are locally bounded

GGN-NTK (zero damping limit)

Let $g(\theta) \equiv \tau \bar{g}(\theta)$; τ controls the regularization strength

Zero damping limit $(\tau \to 0)$ + Infinite overparameterization \iff **dynamics are stable**, and the (unregularized) GGN iterations:

$$\theta_{t+1} = \theta_t - \alpha_t J_t^{\mathsf{T}} G_t^{-1} e_t$$

NTK matrix: $G_{t_{i,j}} = \langle \nabla_{\theta} \Phi(x_i, \theta_t), \nabla_{\theta} \Phi(x_j, \theta_t) \rangle$ Moore-Penrose inverse \equiv Overparameterized NNs Note: In the infinite-width limit, the GD reduces to the kernel gradient descent:

$$\Phi_{t+1} = \Phi_t - \alpha_t G_t \nabla_{\Phi_t} \hat{R}_s(\Phi_t)$$

Correspondingly, the NTK regression is:

$$\theta_{t+1} = \underset{\theta}{\operatorname{argmin}} \frac{1}{2} \|\langle J_t, \theta - \theta_t \rangle + \nabla_{\Phi_t} \hat{R}_s(\Phi_t) \|^2$$

 \iff linearization of Φ around θ_t

(the GGN-NTK relation)

- When θ_t is close θ_0 , the linearization provides a good approximation to Φ
- Key properties: stability, generalization

Regularization with stability

If $\tau > 0$ ($g \neq 0$), the relation between gradient descent and NTK will probably break.

However, the GGN dynamics still enjoy stability and generalization with infinite overparameterization:

- g is (M_q, ν) -GSC \iff locally stable H_t
- Bounded terms in the GGN iterates

In this case,

$$\Phi_{t+1} = \Phi_t - \alpha_t \hat{G}_t \hat{e}_t$$

where $\hat{G}_t riangleq J_t H_t^{-1} \hat{J}_t^ op (I + \hat{Q}_t \hat{J}_t H_t^{-1} \hat{J}_t^ op)^{-1}$

 Empirically, this can be simulated with small step sizes for GGN (equivalently, the *hidden* learning phenomenon)

Theory: setup

For the regularized GGN updates, consider the adaptive learning rate selection rule

$$\alpha_t = \frac{\bar{\alpha}_t}{1 + M_a \eta_t}$$

where $0 < \bar{\alpha}_t \leq 1$ and $\eta_t = \|\nabla g(\theta_t)\|_{\theta_t}^*$

• For convenience, let $\tilde{\Phi}_t \in \mathbb{R}^{m+1}$ denote the vector obtained by augmenting Φ_t by 1 This $\tilde{\Phi}_t$ corresponds to a different augmented version of J_t denoted by \tilde{J}_t . We have

$$\tilde{\Phi}_{t+1} = \tilde{\Phi}_t - \alpha_t \tilde{G}_t \hat{e}_t$$

where $\tilde{G}_t \triangleq \tilde{J}_t H_t^{-1} \hat{J}_t^{\top} (I + \hat{Q}_t \hat{J}_t H_t^{-1} \hat{J}_t^{\top})^{-1}$ Also, let $\tilde{\Phi}^* \in \mathbb{R}^{m+1}$ denote the vector obtained by augmenting Φ_t^* by 0

- Let B_R , B_Φ , B_g , d_g , d_q , β , D_g and D_R be fixed constant terms defined by the regularity assumption. Also, introduce $\hat{\beta}_m \triangleq \sigma_{\min}(J)$, the smallest singular value of J
- Suppose the GGN iterates remain inside the ball $\mathcal{B}_{r_0}(\theta_0) \subset \mathcal{E}_r(\theta_0)$, where $\mathcal{E}_r(\theta_0)$ is an ellipsoid

Theory: convergence

Theorem. Fix $0 < \bar{\alpha}_t \equiv \bar{\alpha} < 1$, and choose $T \triangleq \frac{1}{\bar{\alpha}} \log(\|\tilde{\Phi}_0 - \tilde{\Phi}^*\|^2/\epsilon)$ for any $\epsilon \in (0,1)$. It holds that $\|\Phi_T - \Phi^*\|^2 \leq \epsilon$ (or equivalently, $\|\tilde{\Phi}_T - \tilde{\Phi}^*\|^2 \leq \epsilon + 1$) after T iterations, if $1 + M_g \eta_t \leq \|\tilde{G}_t\|_F$ and $|\tilde{G}_{22}| \geq |\langle \tilde{G}_{21}^\top + \tilde{G}_{12}, \tilde{v} \rangle|$ for some \tilde{v} depending on $t \leq T$ where, given a 2×2 block partitioning of \tilde{G}_t , $\tilde{G}_{22} \in \mathbb{R}^{1 \times 1}$, $\tilde{G}_{21} \in \mathbb{R}^{1 \times (m+1)}$, and $\tilde{G}_{12} \in \mathbb{R}^{(m+1) \times 1}$ respectively denote the lower right, lower left and upper right blocks of \tilde{G}_t

• It is reasonable to choose au satisfying $1+\tau M_g\eta_0\leq \sqrt{(m+1)\lambda_1(\tilde{G}_0^\top \tilde{G}_0)}$

Theory: loss decay

Theorem. The loss decays according to $\mathcal{L}(\theta_{t+1}) \leq \mathcal{L}(\theta_t) - \left[\vartheta L_{D_t}^2(1+D_g\varpi_t) - \xi L_{D_t}\right],$ for $t \geq 0$, where $L_{D_t} \triangleq \frac{\alpha_t \beta \hat{\beta}_1 D_g}{d_g(D_g + d_g \hat{\beta}_m^2)}$, $\xi \triangleq B_R B_\Phi + B_g$, $\vartheta \triangleq B_\Phi^2(\gamma_R - D_R)$, $\varpi_t \triangleq \omega_\nu (d_\nu(\theta_t, \theta_{t+1})) - \omega_\nu (-d_\nu(\theta_t, \theta_{t+1}))$, ω_ν is an increasing univariate function, d_ν is a scaled metric term associated with the self-concordance of g, and we assume $d_\nu(\theta_t, \theta_{t+1}) < 1$

Simulation: teacher-student

Let $\theta^* \equiv (u^*, v^*)$, $\varrho(x) \triangleq x/(1 + \exp(-x))$ and

$$\mathbb{R}^{n_0}
ightarrow x\mapsto \Phi^*(x; heta^*) riangleq \sum_{i=1}^{n^*} v_i^*arrho(u_i^*x)$$

$$\bar{g}(\theta) = \sum_{i=1}^{p} \frac{\mu^2 - \mu \sqrt{\mu^2 + \theta_i^2} + \theta_i^2}{\sqrt{\mu^2 + \theta_i^2}}$$

where $M_q = 2\mu^{-0.7} p^{0.2}$, $\nu = 2.6$, $\mu = 1/\kappa(n)$

Train: 500, test: 1000, n = 500, $n^* = 5$

References

- [1] Wei, C., Lee, J. D., Liu, Q., & Ma, T. (2019). Regularization matters: Generalization and optimization of neural nets vs their induced kernel, *Advances in Neural Information Processing Systems, 32*
- [2] Cai, T., Gao, R., Hou, J., Chen, S., Wang, D., He, D., ... & Wang, L. (2019). Gram-gauss-newton method: Learning overparameterized neural networks for regression problems, arXiv preprint arXiv:1905.11675
- [3] Arbel, M., Menegaux, R., & Wolinski, P. (2024). Rethinking Gauss-Newton for learning over-parameterized models, *Advances in Neural Information Processing Systems*, 36
- [4] Adeoye, A. D., Petersen, P. C., & Bemporad, A. (2024). Regularized Gauss-Newton for Optimizing Overparameterized Neural Networks, *arXiv* preprint arXiv:2404.14875