Optimization of Neural Networks with an Explicit Regularization:

Generallzed Gauss—Newton Method
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Neural Network Training

Let n = number of hidden neurons, ny = input

dimension. The one-hidden layer NN is:
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The training task: Find 6 minimizing
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g is a convex regularizer

Setup & key assumptions

Q: = V2 Ry(Dy), e; = Vi, Rs(Py), Hy =
Jp = (vecb(a:l, et), o Ve®(zm, 0,) T
Regularized GGN iterations: augment (), ¢;

V2 g(6y),

and J;, resp. by 0, 1 and Vg(6;) in appropriate

dimensions; denote by Qt, é; and jt, resp.
Orr1 = 0; — Oét(jtTQtjt + Ht)_lj;rét

where oy are step sizes (or learning rates)

Convenient form for overparameterized models:

Ht—l—l — 9,5 OétH 1JT(I + QtJt 1JT)

= o is twice differentiable, Lipschitz, and smooth

= g is thrice differentiable and (M, v)-GSC (gen-
eralized self-concordant): Vu,v € RP?,
[(V° g(2)[v]u, u)| < Mllullz]lvllz=|lv ]I

A

= R, is ygr-strongly convex, and has upper-bounded

gradients and Hessian; g, Qt and é; are locally

bounded
GGN-NTK (zero damping limit)

Let g(0) = 7g(0); T controls the regularization
strength

Zero damping limit (7 — 0) + Infinite overpa-
rameterization <= dynamics are stable, and
the (unregularized) GGN iterations:

T -1
9t+1 = (9,5 — atJt Gt €t

NTK matrix: Gtz’,j = <V9(I>(£BZ, Ht), V@CI)(ZCJ', Ht)>
Moore-Penrose inverse = Overparameterized NNs
Note: In the infinite-width limit, the GD re-

duces to the kernel gradient descent:
b =Dy — athqutﬁS(th)

Correspondingly, the NTK regression is:

1 -
01 = argmin (Tt 0 = 61) + Vo Rs(P,)||°

<= linearization of ® around 6,
(the GGN-NTK relation)

= When 0; is close 6, the linearization provides

a good approximation to ®

= Key properties: stability, generalization

Regularization with stability

If 7 > 0 (g # 0), the relation between gradient
descent and NTK will probably break.

However, the GGN dynamics still enjoy stability
and generalization with infinite overparameteri-

zation:
= gis (M,,v)-GSC <= locally stable H,
= Bounded terms in the GGN iterates

In this case,
D1 = O — Gy

JHYI (I + Q. H ' I )™

where Gt

= Empirically, this can be simulated with small
step sizes for GGN (equivalently, the hidden

learning phenomenon)

Theory: setup

For the regularized GGN updates, consider the
adaptive learning rate selection rule
o%
1+ Mn;
where 0 < a; < 1 and n; = [|[Vg(6y)]]3,

Oy =

= For convenience, let ®; € R™! denote the

vector obtained by augmenting ®; by 1

This ®; corresponds to a different augmented

version of J; denoted by J.. We have
EISHl — &)t — atétét

JHJ (I + QuJ.H ' JT )~

R™+! denote the vector ob-

where G, £

Also. let ®* ¢
tained by augmenting ®; by 0

= Let Bp, Bs, Bg, dg, dq, ﬁ, Dg and Dp be
fixed constant terms defined by the regularity
assumption. Also, introduce Bm 2 Omin(J),

the smallest singular value of J

= Suppose the GGN iterates remain inside the
ball B,,(6y) C &:(6y), where £,.(6y) is an ellip-

soid

Theory: convergence

Theorem. Fix 0 < oy = o < 1, and choose

1 ~ ~
T = alog(HCI)O—CI)*HZ/e) for any € € (0,1).

It holds that || — CID"‘H2 < ¢ (or equivalently,
‘@T — O |2 < e+ 1) after T iterations, if 1 +
M < ||GillF and |Gog| > [(G3y + Gro, D)
t < T where, given

for some ¥ depending on
a 2 X 2 block partitioning of Gy, Gy € RIX1
Goy € R and Gy € RMTUXL regpec-
tively denote the lower right, lower left and upper

right blocks of G,

= |t is reasonable to choose 7 satisfying 1 +

TMm < \/(m + 1))\1(67’3@0)

Theory: loss decay

Theorem. The loss decays according to

L(0r1) < £(8) — |9L},(1+ Dyy) — ELp, .
A aBBiD, A

fort > 0, where LDt = 4(Dord L) {" = BpBs+

By, 9 = Bi(yr— DR), wi = w,(dy (64, 0441)) —

wy(—d, (6, 6:11)), wy, is an increasing univariate

function, d, is a scaled metric term associated

with the self-concordance of g, and we assume

dy(0y,60:41) < 1

Simulation: teacher-student

Let 6* = (u*,v*), o(z) = z/(1+ exp(—=z)) and

ngux

R™ 3 2 +— ¢*(x;0") =

_ i;ﬂ—u\/u 07 + 6;
i=1 Vi +6;

where M, = 2u~%p"% v = 2.6, u = 1/k(n)
Train: 500, test: 1000, n = 500, n* =5
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“T-I" measure = “stability of activations”
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