
A Deep Neural Network Optimization Method Via A
Traffic Flow Model

Adeyemi Damilare Adeoye
African Master’s in Machine Intelligence

African Institute for Mathematical Sciences (AIMS)
Kigali, Rwanda

aadeoye@aimsammi.org

Philipp Petersen
Faculty of Mathematics

University of Vienna
Vienna, Austria

philipp.petersen@univie.ac.at

Abstract

We present, via the solution of nonlinear parabolic partial differential equations
(PDEs), a continuous-time formulation for stochastic optimization algorithms
used for training deep neural networks. Using continuous-time formulation of
stochastic differential equations (SDEs), relaxation approaches like the stochastic
gradient descent (SGD) method are interpreted as the solution of nonlinear PDEs
that arise from modeling physical problems. We reinterpret, through homogeniza-
tion of SDEs, the modified SGD algorithm as the solution of the viscous Burgers’
equation that models a highway traffic flow.

1 Introduction

Deep neural networks (DNNs) have achieved massive success in several areas including image classi-
fication, speech recognition, and natural language processing, particularly when there is a nonlinear
relationship between the given data and the labels [1–4]. The depths of these networks allow com-
plex data-label relationships to be expressed since each layer nonlinearly transforms the features
and therefore effectively filters the information content. This makes them superior to the traditional
techniques.

Neural networks (NNs) are considered a class of parametric functions each of which explains some
data-label relation. In order to train a given network architecture, we need to find the parameters
of these functions that generalize well to new unlabeled data. This leads to solving an inverse
problem, also called the learning problem, which involves minimizing a non-convex function. With
the presence of several hidden layers, the use of deeper network architectures introduces increased
network capacity, and thus a high computational complexity, of the parameter estimation problem.
Therefore, despite being used for decades, deep learning has only recently revolutionized many
applications incited by advances in computational hardware and availability of large datasets.

When considering very large datasets, notable sources of limitations encountered in deep learn-
ing are the dimensionality and non-convexity of the relative optimization problem. The stochastic
gradient descent (SGD) method [5, 6] and its variants [7–10] have been extensively used as a tra-
ditional learning algorithm for finding optimal solutions. In these SGD-based algorithms, iterative
procedures for parameter estimation are performed using gradient information computed via back-
propagation [11–13]. While they are efficient to implement and allow the estimation to scale to
massive datasets, the incremental updates to the parameter tend to be slow, especially in the initial
stages of the training.

Additionally, difficulties stemming from numerical instabilities of the neural network model, and
statistical inefficiency (as the algorithms do not use all the information in the dataset) have been
reported about these algorithms [14, 15]. A related problem is the observation of vanishing or
exploding gradients [16]. Since the gradient represents the sensitivity of the output with respect to

a perturbation in the input, a vanishing gradient implies that the output is insensitive with respect to
the input, while an exploding gradient implies that the output is unstable with respect to the input.

These observations lead to the question of whether there are other methods for training deep neural
networks. Attempts to answer this question result to the development of alternative training methods
that outperform and eliminate some of the problems associated with the parameter estimation meth-
ods based on SGD. In recent times, researchers have developed frameworks inspired by differential
equations for training algorithms. The continuous dynamical system approach to deep learning has
been explored, where DNNs are being idealized as a discretization of an ordinary differential equa-
tion (ODE) [17–23], or as a discretization of a partial differential equation (PDE) [[24, 25]].

Motivated by previous work on local entropy that was introduced to replace the modified loss func-
tion of a non-convex optimization problem, [26] reinterpretes relaxation techniques arising in statis-
tical physics as solutions of a visous Hamilton-Jacobi PDE through a stochastic differential equation
(SDE) homogenization problem [27]. The authors proved, through a stochastic control interpreta-
tion, that the modified algorithm performs better than the SGD. In this work, we reinterprete the
modified SGD as the solution of the viscous Burgers’ equation that models a highway traffic flow.

The rest of this work is organized as follows: In section 2, we introduce the concept of DNNs, and
study how optimization problems arise in machine learning. In particular, we present the use of
DNNs in perceptual tasks such as speech or image recognition categorized as supervised learning
tasks that involve large-scale, highly nonlinear, and non-convex optimization problems. We also
provide a review of the SGD algorithm for optimizing DNNs, and a motivation for seeking modified
SGD algorithms such as the one presented in this work. In section 3, we derive the viscous Burgers’
equation as a model for a highway traffic flow, from which we obtain the stochastic differential
equation (SDE) satisfied by the parameter updates of the neural network. In section 4, we solve the
viscous Burgers’ equation and show that the solution exactly gives the gradient of the local entropy
function interpreted as the objective function of the optimization problem that results from training
a DNN. In section 5, we introduce the concept of homogenization for SDEs [28], and obtain the
continuous-time dynamics, which is then sampled numerically to obtain the discrete-time solution.

2 Continuous-time stochastic optimization in deep neural networks (DNNs)

Suppose we are given a set of data points {(θ1, y1), . . . , (θn, yn)}, where θi ∈ Rdθ , yi ∈ Rdy ,
i = 1, . . . , n represent input-output pairs, and n is the number of samples. Here, the input instance
θi may represent a word vector, or the feature vector of an object or image, etc, while the output
instance yi may represent a real-valued vector for a regression problem, or an integer-valued vector
for a classification problem. A deep neural network (DNN) is a family H (called the hypothesis
space) of prediction functions defined by

H := {y(·;x) : x ∈ W}, (2.1)

where W is a set of parameters specified below, for some given y(·; ·) : Rdθ × W → Rdy whose
value, the predicted output vector ŷ ∈ Rdy , is computed by applying iterative transformations to a
given input vector θ ∈ Rdθ through the recursion formula

z0 = θ; zl = σ(Wlzl−1 + bl), l = 1, . . . , L, (2.2)
where L is the number of hidden layers (or depth) of the neural network, zl is the hidden state at
layer l, the weight matrix Wl ∈ Rdl×dl−1 together with the bias vector bl ∈ Rdl constitute the
trainable parameters in the l-th layer, and x = (Wl, bl) ∈ W represents the collection of all the
trainable parameters with W = Rdl×dl−1 × Rdl . The function σ : R → R known as the neuron
activation function introduces nonlinearity to the network, and is applied element-wise. Hence, the
output zL of the entire network is given by the function y : Rdθ ×W → Rdy defined by

y : Rdθ ×W → Rdy (2.3)
(θ, x) 7→ y(θ;x) := TLσ(TL · · ·σ(T2σ(T1(θ)))), (2.4)

where Tl(x) =Wlθ + bl, and l = 1, . . . , L.

2.1 Non-convex optimization problems in DNNs

Let ℓ : Rdy × Rdy → R be a given distance metric called the loss function. The optimization
problem we want to solve involves choosing the parameter of the neural network that minimizes

2

the distance ℓ(yi, ŷi) between the predicted output ŷi = yx(θi) and the true output yi. Assume
that the input-output space Rdθ × Rdy is endowed with the unknown joint probability distribution
P : Rdθ × Rdy → [0, 1], and consider the following optimization problem

min
x

E[ℓ(y, yx(θ))]; E[ℓ(y, yx(θ))] :=
∫
Rdθ×Rdy

ℓ(y, yθ(x))dP (θ, y). (2.5)

Since P is unknown, and that in supervised learning we have access to a set ofN ∈ N independently
drawn input-output samples {(θi, yi)}Ni=1 ⊆ Rdθ × Rdy from P , we rather attempt to minimize the
empirical risk F : W → R given as

F (x) :=
1

N

N∑
i=1

ℓ(yi, yx(θi)). (2.6)

Therefore, the optimization problem we wish to solve is the empirical risk minimization problem

min
x
F (x), (2.7)

and we write

x∗ = argmin
x

F (x), (2.8)

as the value of x that minimizes F (x).

The choice of the loss function ℓ(y, ŷ) mostly depends on the type of problem we want to solve.
For example, a popular choice of ℓ(y, ŷ) for a regression problem is the quadratic loss function
ℓ(y, ŷ) = ‖y − ŷ‖2. For binary classification problems, ℓ(y, ŷ) is usually chosen to be ℓ(y, ŷ) =
log(1 + exp(−yŷ)).
The optimization problem (2.7) is highly nonlinear and nonconvex in general, making it difficult to
solve to global optimality [29, 30]. Gradient-based methods have however been successfully used
to compute approximate solutions, where the gradient of the objective in (2.7) is computed by the
chain rule using back-propagation. A typical DNN contains very large numbers of parameters in
their layers, each of which has to be optimized. This can take several hundreds of hours of training,
and weeks of computation on a high-end computer. Popular gradient-based methods that have been
used extensively to optimize DNNs are the first-order algorithms such as the gradient descent (GD),
and the stochastic gradient descent (SGD) and its variants. Developments in this work are based on
continuous-time SDE interpretation of the SGD.

2.2 Gradient-based optimization

The GD [31, 32] used for solving optimization problems of the form (2.8) performs iteration of the
form

xk+1 = xk − δt∇F (xk), (2.9)

where δt > 0 is the step-size (or learning rate) and ∇F (xk) is the gradient of the loss function at
the k-th iteration (k ∈ N).

In practice, it is not possible to load all samples into the memory of a single GPU or CPU for
computing the entire gradient 1

N

∑N
i=1 ∇ℓ(yi, Fx(θi)). A more practical choice is SGD or any of

its variants. Theoretically, SGD works as follows: at the k-th iteration, randomly select i and update
the parameter by

xk+1 = xk − δt∇Fi(xk), (2.10)

where Fi(x) := ℓ(yi, Fx(θi)). The stochastic nature of SGD arises from the approximation of the
gradient over a subset of the data points. Also common is “mini-batch" SGD, where we choose a
random subset Ik ⊆ 1, . . . , N, |Ik| = B � N to write (2.7) as a finite-sum optimization problem:

min
x
Fmb(x); Fmb(x) :=

1

B

B∑
i=1

Fi(x), (2.11)

3

where each Fi(x) represents the sum of training loss for a “mini-batch" of training samples, and B
is the total number of mini-batches (smaller than the total number of training samples N) [5]. We
then perform the iteration

xk+1 = xk − δt∇Fmb(xk). (2.12)

One reason for the use of SGD instead of GD is the faster convergence in a “memory-constraint”
system where it is difficult to find a parallel way to load and process all samples in a single machine
[33]. In such a system, batch GD has to scan through the entire training set during one iteration
before taking the next iteration, whereas the SGD starts to converge right away from the first sample,
hence a noticeable faster convergence speed in the early iterations.

2.3 Continuous-time stochastic optimization

While it converges very fast in the early iterations, the SGD algorithm slows down in later iterations
and thus struggles to reach an accurate solution. This is because although the stochastic gradient is
an unbiased estimator of the gradient:

E[∇Fmb(x)] = ∇F (x), (2.13)

it may end up with a high variance. In order to get the best of both the fast initial convergence
of SGD and the steady linear convergence of GD to a great extent, we further assume a bounded
variance for the stochastic gradient, that is, for all iterates xk of the SGD, there exists νmb > 0 such
that [34]

E[‖∇Fmb(x)−∇F (x)‖2] ≤ 2νmb. (2.14)

Here, the "mb" in the notation νmb only indicates the noise is coming from the mini-batch gradients.
Henceforth, we will simply write ν.

We start with the standard observation that the discrete-time dynamics in (2.10) can be viewed as a
discretization of the continuous-time Langevin dynamics described by the Itô stochastic differential
equation (SDE) [35, 36]

dx(t) = −∇F (x(t)) dt+
√
2ν dW (t), t ≥ 0, x(0) = x0, (2.15)

where W (t) ∈ Rm is the standard m-dimensional Wiener process.

Under suitable assumptions on F , it can be shown that the unique invariant distribution of (2.15) is
the Gibbs distribution

ρ∞(ν;x) ∝ exp

(
− 1

2ν
F (x)

)
, (2.16)

and that using the idea of simulated annealing to evade metastability1, the distributions of x(t)
are made to converge rapidly to ρ∞ as t → ∞ [37–39]. Moreover from (2.16), ρ∞ concentrates
around the minimizers of F (x) for small enough values of ν [40, 41]. Consequently, as the Gibbs
distribution turns out to be an approximate minimizer for the empirical risk (2.6), we will observe
that the resulting modified SGD algorithm tracks the Langevin dynamics in a suitable sense.

2.4 Regularization of the loss function

As discussed, training DNNs involves modeling a high-dimensional nonconvex loss function. In
order to improve the computational efficiency with a large number of training data, the stochastic es-
timation of the gradients of these loss functions are carried out using the SGD algorithm or any of its
variants. However, to improve performance of the optimization algorithm and the generalization of
the model, it is generally required to introduce a regularization term in the loss function. Several reg-
ularization techniques that show outstanding results have been developed for optimizing nonconvex
empirical risks of deep networks. These regularization techniques are categorized as either explicit,
e.g. weight decay, sparsity constraint, and entropy minimization or implicit, e.g. noise injection,
dropout, learning rate decay, model ensemble, and batch normalization [42].

1Metastability is a phenomenon that describes a set of states of a dynamic system that can persist for a long
time. In other words, a dynamic system is said to exhibit metastability if the convergence of the probability
density of its states takes an exponentially long time.

4

Our focus in this work is to derive, through homogenization of SDEs, a form of the regularized SGD
presented by [26], from the solution of the viscous Burgers’ equation that models a highway traffic
flow. [26] models the loss function of a class of deep networks as a spin glass Hamiltonian system,
and with results that show good empirical performance, they introduce a smoothing technique that
stems from imposing PDE regularity which contributes to the analysis of the geometric property of
the energy landscape of the networks. By combining tools from the theory of PDEs and tools from
modeling stochastic first-order algorithms as continuous-time stochastic processes, we are able to
provide insights on how new approaches for solving optimization problems that arise in DNNs
could be developed starting with mathematical models that describe real life situations. As shown,
this process can often lead to improvements in state-of-the-art DNN algorithms.

3 The viscous Burgers’ equation as the model for a highway traffic flow

Consider the viscous Burgers’ equation

ut + u · ∇u = ν∆u for (x, t) ∈ Rd × [0,∞), (3.1)

where ν ∈ R+ is a positive coefficient, and ∇ =
n∑

i=1

∂
∂xi

and ∆ =
n∑

i=1

∂2

∂x2
i

are respectively the

gradient and Laplacian in the space variables.

We will express the model for a highway traffic flow as the Burgers’ equation (3.1). The traffic flow
model will be derived using a continuous, deterministic approach. By continuous, we mean that
the traffic will be observed from a distance far enough that the size and behaviour of a car becomes
negligible, and will rather deal with average concepts, such as the number of cars per mile and the
average speed of the car. By deterministic, we mean to consider the situation where the change of
the traffic with time is exclusively specified by the model. Hence, in this setting, each car entering
and exiting a highway will be replaced by a continuous density function

ρ : Rd × (0,∞) → R
(x, t) 7→ ρ(x, t). (3.2)

With the additional constraint that follows from the realization that the typical car speed depends on
the level of traffic congestion (the car density), that is q = Q(ρ), the differential form of the equation
for car (nonlinear) conservation is given by the closed system

ρt +∇q = 0 (3.3)
q = Q(ρ) (3.4)

where the traffic density ρ(x, t) ∈ Rd measures the number of cars per unit length of the road at
position x and time t, and the traffic flowQ(x, t) ∈ Rd, also known as the flux, represents the number
of cars crossing position x per unit time at time t [43]. A third fundamental (dependent) quantity
that helps to describe the traffic flow is the velocity u ∈ Rd of a car at any point on the highway,
and is assumed to depend only on the traffic density, that is, u = U(ρ). These three fundamental
variables are related by the identity

Q = ρU. (3.5)

The prescribed function Q(ρ) depends on the characteristics of the road, cars and drivers, such as
the car speed, speed limits, weather conditions, and the road conditions.

Equations (3.3) and (3.4) together gives the first-order, non-linear, partial differential equation for
traffic flow in the form of a closed equation for the single variable ρ:

ρt +Q′(ρ)∇ρ = 0 for (x, t) ∈ Rd × (0,∞). (3.6)

As the traffic flow model is based on the first-order approximation, we could define a better approx-
imation for q by assuming it is a function of the density ρ as well as its gradient ρx, and define

q = Q(ρ)− ν∇ρ. (3.7)

Consider a linear relationship between velocity and traffic density [43]:

u(ρ) = um

(
1− ρ

ρm

)
, (3.8)

5

where um is the maximum velocity, and ρm is the maximum density. We have (from (3.5))

Q′(ρ) =
d

dρ
(ρu)

=
d

dρ

[
ρum

(
1− ρ

ρm

)]

= um

(
1− 2ρ

ρm

)
. (3.9)

Also, from (3.7)

∇q = Q′(ρ)∇ρ− ν∆ρ,

or (using (3.3))

ρt +Q′(ρ)∇ρ− ν∆ρ = 0. (3.10)

Assume w, ρ ∈ C∞(Rd × (0,∞)), and define

w(ρ) = Q′(ρ) = um

(
1− 2ρ

ρm

)
, (3.11)

then

ρ =
ρm
2um

(1− w), ρt = −ρmwt

2um
, ∇ρ = −ρm∇w

2um
, and ∆ρ =

ρm∆w

2um
. (3.12)

Substituting (3.12) into (3.10) and multiplying the resulting equation by w′(ρ) = − 2um

ρm
, we get the

viscous Burgers’ equation for the highway traffic flow:

wt + w∇w = ν∆w for (x, t) ∈ Rd × (0,∞). (3.13)

4 Nonlinear parabolic PDEs and the local entropy

Introduced for studying the energy landscape of neural network learning algorithms, the local en-
tropy is a modified form of the objective function F (x) of the neural network parameters [see for
example, 44]. While extending the notion of local entropy to continuous variables, [27] replaced the
objective function F (x), defined for x ∈ Rd, with the function Fγ(x) given by

Fγ(x) = 2ν log

(
G2νγ ∗ exp

(
− 1

2v
F (x)

))
(x ∈ Rd), (4.1)

where Gγ(x) = (2πγ)d/2 exp
(
− |x|2

2γ

)
is the Green’s function (or heat kernel), and f ∗ g defines

the convolution of f and g:

(f ∗ g)(x) :=
∫ ∞

−∞
f(t)g(x− t)dt. (4.2)

Assuming F ∈ C∞(Rd), we will derive a closed form solution w(x, t) of the initial-value problem{
wt + w∇w = ν∆w in (x, t) ∈ Rd × (0,∞),

w(x, 0) = F (x) on (x, t) ∈ Rd × {t = 0},
(4.3)

for the viscous Burgers’ equation (3.13), by a non-linear change of variables, due to the transforma-
tion of Cole [45] and Hopf [46], which turns it into an initial-value problem for a linear diffusion
equation (the heat equation). We will then show that this solution w(x, t) recovers the gradient of
Fγ(x).
4.1 Proposition. The local entropy function Fγ(x) defined by (4.1) is the solution of the initial-
value problem for the viscous Hamilton-Jacobi equation

ϕt +
(∇ϕ)2

2
= ν∆ϕ for (x, t) ∈ Rd × (0,∞), (4.4)

with initial values ∇ϕ(x, 0) = F (x) [26]. Moreover, the gradient ∇Fγ(x) solves the viscous Burg-
ers’ equation (4.3).

6

Proof. We start by writing the viscous Burgers’ equation (3.13) as

wt +∇

(
w2

2
− ν∇w

)
= 0. (4.5)

As it is not yet specified, let us assume for the moment that w is a smooth solution of (4.5), we set
ψ := ϕ(w), where ϕ : Rd× (0,∞) → R is a smooth function. We want to choose ϕ so that ψ solves
a linear equation. Let w satisfy the irrotational condition

∇×W =

d∑
i,j=1

(
∂wj

∂xi
− ∂wi

∂xj

)(
ei ∧ ej

)
= 0, (4.6)

where ei, i ≤ 1 ≤ d are basis of Rd, and for vectors u, v ∈ Rd, u ∧ v defines the wedge/exterior
product given by

u ∧ v = u⊗ v − v ⊗ u. (4.7)

We define

ϕ(x, t) :=

∫ x

−∞
w(z, t)dz, =⇒ w(x, t) = ∇ϕ(x, t), (4.8)

and write the Hopf-Cole transformation [46, 45]

ϕ = −2ν log(ψ), (4.9)

where log(v) = (log vi)1≤i≤d for a vector v ∈ Rd.

We have 

ϕt = −2ν

ψ
ψt,

∇ϕ = −2ν

ψ
∇ψ,

∆ϕ = −2ν

ψ
∆ψ + 2ν

(
∇ψ
ψ

)2

.

(4.10)

Putting (4.10) in (4.8) and (4.5), we get the linear d-dimensional heat equation

ψt = ν∆ψ (x ∈ Rd, t > 0), (4.11)

with the initial condition ψ(x, 0) = g1(x). In terms of the initial value w(x, 0) = F (x), and from
(4.10), the initial data for ψ becomes

w(x, 0) = F (x) = −2ν
∇ψ(x, 0)
ψ(x, 0)

. (4.12)

Integrating, we get

ψ(x, 0) = g1(x) = exp

(
− 1

2ν

∫ x

0

F (z)dz

)
. (4.13)

The general solution to the resulting initial-value problem for ψ is given as convolution of the initial-
value with the heat kernel H(x, t):

ψ(x, t) =

∫ ∞

−∞
H(x− y, t)ψ(y, 0)dy for (x, t) ∈ Rd × (0,∞),

H(x, t) =
1√
4πνt

exp

(
− x2

4νt

)
.

(4.14)

By normalizing ϕ(x, t) by ϕ(0, t) = 0, we obtain from ψ(x, t), the solution for the initial-value
problem for the viscous Hamilton-Jacobi equation (4.4):

ϕ(x, t) = −2ν log


∫ ∞

−∞

1√
4πνt

exp

[
− (x− y)2

4νt
− 1

2ν

∫ y

0

F (z)dz

]
dy

 =: Ft(x). (4.15)

7

Finally, the solution of the viscous Burgers’ equation (3.13) is

w(x, t) = ∇ϕ(x, t) =

∫∞
−∞

x−y
t exp

(
− (x−y)2

4νt − 1
2ν

∫ y

0
F (z)dz

)
dy∫∞

−∞ exp
(
− (x−y)2

4νt − 1
2ν

∫ y

0
F (z)dz

)
dy

, (4.16)

where x ∈ Rd, t > 0. ■
4.2 Remark. The solution ψ(x, t) of the heat equation (4.11), given by (4.14), can be written in a
more convenient form as

ψ(x, t) =
1

2
√
πνt

∫ ∞

−∞
exp

(
− G

2ν

)
dy, (4.17)

where

G(x, y; t) =

∫ y

0

F (z)dz +
(x− y)2

2t
(x, y ∈ Rd, t > 0), (4.18)

and the gradient is given by

∇ψ(x, t) = − 1

4ν
√
πνt

∫ ∞

−∞

x− y

t
exp

(
− G

2ν

)
dy. (4.19)

4.3 Remark. We can equivalently write (4.16) as

w(x, t) = ∇ϕ(x, t) =
∫ ∞

−∞

y − x

t
ρ∞1 (dy;x) =

∫ ∞

−∞
∇F (x− y)ρ∞2 (dy;x), (4.20)

where x ∈ Rd, t > 0. The functions ρ∞1 (y;x), ρ∞2 (y;x) are invariant distributions given by
ρ∞1 (y;x) =

1

Z1
exp

(
− 1

2ν
F (y)− |x− y|2

4νt

)
,

ρ∞2 (y;x) =
1

Z2
exp

(
− 1

2ν
F (x− y)− |y|2

4νt

)
,

(4.21)

and 
Z1(x) = −

∫ ∞

−∞
exp

(
− 1

2ν
F (y)− |x− y|2

4νt

)
dy,

Z2(x) = −
∫ ∞

−∞
exp

(
− 1

2ν
F (x− y)− |y|2

4νt

)
dy,

(4.22)

are normalizing constants.

5 The local entropy via homogenization for SDEs

We assume a smooth, steady, periodic, and incompressible (or divergence-free) flow velocity, that
is, w(x, t) = −h(x), where h is a smooth periodic vector field with ∇ · h(x) = 0. Consider
F (x) = gϵ := g(ϵx), with ϵ > 0, so that initially the velocity is slowly varying in space. We
expect that the velocity will not vary significantly on small length and time scales, hence to see
the effective behaviour of (3.13), we need to look at large length and time scales. Furthermore, if
h averages over the unit cube (not necessarily to zero), and if we consider the rescaling x → x/ϵ
and t → t/ϵp (p > 0), so as to bring out order-one variations in velocity on large length and time
scales, homogenization techniques enable us to show that the rescaled velocity field wϵ(x, t) :=
w(x/ϵ, t/ϵp) converges, for ϵ� 1, to the solution w(x, t) of the viscous Burgers’ equation (4.3).

In this setting, equation (4.3) becomes
1

ϵ2−p
wϵ

t −
1

ϵ
hϵwϵ

x = νwϵ
xx in (x, t) ∈ Rd × (0,∞),

wϵ(x, 0) = g(ϵx) on (x, t) ∈ Rd × {t = 0},
(5.1)

8

where hϵ = h(x/ϵ). As to what time scale to consider (choice of p) in order to observe interesting
dynamical behaviour, it is intuitive to study (5.1) for different values of p in cases when h averages
to zero and when it does not average to zero. For the purpose of this work, with v > 0, we are
considering the case when h averages to zero, hence the choice p = 2, and equation (5.1) becomesw

ϵ
t −

1

ϵ
hϵwϵ

x = νwϵ
xx in (x, t) ∈ Rd × (0,∞),

wϵ(x, 0) = g(ϵx) on (x, t) ∈ Rd × {t = 0},
(5.2)

Let W (t) ∈ Rm denote an independent standard m-dimensional Wiener process, h : Z = Rn →
Rn a smooth periodic vector-valued function, and β : Z = Rn → Rn×m a smooth matrix-valued
or scalar-valued function. Consider the Itô SDE

dz

dt
= h(z) + β(z)

dW

dt
, z(0) = z0, (5.3)

which is interpreted as an integral equation for z(t) ∈ C(R+,Z):

z(t) = z0 +

∫ t

0

h(z(s))ds+

∫ t

0

β(z(s))dW (s). (5.4)

We introduce the auxiliary dynamics y = x/ϵ and consider the case where z = (xT , yT)T , with
x ∈ X = Rd, y ∈ Y = Rn−d. We then write the system of SDEs

dx(s) = h(x, y)ds, x(0) = x0,

dy(s) =
1

ϵ
g(x, y)ds+

1√
ϵ
β(x, y)dW (s), y(0) = y0,

(5.5)

where we have scaled time to s = ϵt, and g is a sufficiently smooth function. Both x(s) and
y(s) contain fast dynamics, but with the homogenization parameter ϵ > 0, the dynamics in y(s) is
provided with a faster time-scale than that in x(s).

The system (5.5) corresponds to the backward Kolmogorov equation
∂w

∂t
=

1

ϵ
L0w in (x, y, t) ∈ X × Y × (0,∞),

w(x, 0) = g(ϵx) on (x, y, t) ∈ X × Y × {t = 0},
(5.6)

where the generator L0 is defined as

L0w = g(x, y) · ∇yw +
1

2
B∆yw, (5.7)

with B(x, y) = β(x, y)β(x, y)T .

The corresponding Fokker-Planck (forward Kolmogorov) equation is
∂w

∂t
=

1

ϵ
L∗
0w in (x, y, t) ∈ X × Y × (0,∞),

w(x, 0) = g(ϵx) on (x, y, t) ∈ X × Y × {t = 0},
(5.8)

where the L2(Rd)-adjoint operator L∗
0 is defined as

L∗
0w = −∇y(g(x, y)w) +

1

2
∆y(B(x, y)w). (5.9)

Next, we eliminate the y(s) dependence in the Kolmogorov equation (5.6) to identify only a simpli-
fied equation for the dynamics of x(s). To do this, we make an ergodicity assumption: we asume
that for each fixed x, L0 has a one-dimensional null space, and L∗

0 has a null space spanned by the
invariant distribution ρ∞1 (y;x). That is, L0 satisfies{

L01(y) = 0,

L∗
0ρ

∞
1 (y;x) = 0,

(5.10)

where 1(y) denotes constants (equal to 1 a.e.) in y(s) and ρ∞1 (y;x) is the density of an ergodic
measure µx(dy) = ρ∞1 (y;x)dy.

9

5.1 Result. For ϵ � 1 and times t up to O(1), wϵ(x, t) solving (5.2) is approximated by w(x, t)
solving the homogenized equation{

wt = ∇Fγ(x)wx in (x, t) ∈ X × (0,∞),

w(x, 0) = g, on (x, t) ∈ X × {t = 0}. (5.11)

We equivalently state the result as follows: For ϵ � 1 and times t up to O(1), x(s) solving (5.5) is
approximated by X solving

dX

ds
= ∇Fγ(X), X(0) = x0, (5.12)

where the homogenized vector field ∇F for X is defined as the average against the ergodic mea-
sure µx, and by ergodicity, the spatial average

∫
Y

y(s)−X
γ dµx, is equal to the temporal average

1
T

∫ T

0
y(s)−x

t ds for T � 1:

∇Fγ(X) =

∫
Y

y(s)−X

γ
µx(dy) = lim

T→∞

1

T

∫ T

0

y(s)− x

t
ds. (5.13)

Put β = (2ν)1/2, and define g(x, y) ≡ −∇yG(x, y; γ) = −∇F (y) + x−y
γ in (5.5). We obtain the

system of SDEs
dx(s) = −γ−1(x− y)ds, x(0) = x0,

dy(s) = −1

ϵ

[
∇F (y) + y − x

γ

]
ds+

√
2

ϵ
ν1/2dW (s), y(0) = y0.

(5.14)

Let ρ(x, t) ∈ C2,1
(
X × (0,∞),R

)
∩ C

(
X × (0,∞),R

)
denote the probability density of the

dynamic y(s), then the Fokker-Planck equation for ρ(x, t) is given by
∂ρ

∂t
= L∗

0ρ = ∇y(∇yGρ) +
1

2

√
2ν∆yρ in (x, y, t) ∈ X × Y × (0,∞),

ρ(x, 0) = ρ0 on (x, y, t) ∈ X × Y × {t = 0}.
(5.15)

The invariant measure ρ∞1 given by

ρ∞1 (y;x) =
1

Z
exp

(
−βG(x, y; γ)

)
, (5.16)

satisfies the Fokker-Planck equation (5.15) [28, 47], which agrees with equation (4.21) of Remark
4.3.

5.2 Sampling for a discrete-time solution

Using the Milstein method [48], the system (5.14) is sampled for y(s) and x(s) on the time interval
[0, T] with step δt > 0, known as the learning rate. Suppose that we partition the interval [0, T] into
N equal subintervals

0 = τ0 < τ1 < · · · < τN = T, (5.17)

with τk = kδt and δt = T/N , then for k = 0, . . . , N , we obtain the discrete-time system

yk+1 = yk − δt
[
∇Fmb(yk) +

yk − xk
γ

]
+
√
2δtνδwk , (5.18)

xk+1 =

{
xk − δtγ−1(xk − yk) if (k mod N) = 0,

xk otherwise,
(5.19)

where again, the "mb" notation indicates we only have the mini-batch gradients, and δwk =Wτk+1
−

Wτk are normal random variables with mean zero and scale
√
δt.

10

6 Conclusion

We presented an optimization method which is based on the SGD in continuous-time. Like any
other gradient-based algorithm developed through a continuous-time model, the algorithm allow pa-
rameters to be updated on-line in continuous-time with the parameter updates xt satisfying an SDE.
While establishing a connection, via homogenization techniques, between solutions of nonlinear
PDEs (like the viscous Hamilton-Jacobi equation) and stochastic optimization algorithms used for
training DNNs, it was studied in [26] that one could develop modified SGD algorithms that scale
better in practice than the SGD method. Following this result, we were able to show in this work
that the resulting modified SGD algorithm which is interpreted as the gradient of the solution of a
viscous Hamilton-Jacobi equation indeed solves a viscous Burgers’ equation that models a highway
traffic flow.

Acknowledgements

The authors are grateful to Google and Facebook for sponsoring the Master’s program (African Mas-
ter’s in Machine Intelligence) which birthed this work, and to the African Institute for Mathematical
Sciences, Rwanda for providing the necessary platform.

References
[1] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification with deep convolutional neural

networks,” Neural Information Processing Systems, vol. 25, 01 2012.

[2] Y. Bengio et al., “Foundations and trends in machine learning,” Foundations and Trends in Signal Pro-
cessing, vol. 7, no. 3-4, 2009.

[3] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen,
T. N. Sainath, et al., “Deep neural networks for acoustic modeling in speech recognition: The shared
views of four research groups,” IEEE Signal processing magazine, vol. 29, no. 6, pp. 82–97, 2012.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.

[5] H. Robbins and S. Monro, “A stochastic approximation method,” The annals of mathematical statistics,
pp. 400–407, 1951.

[6] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Proceedings of COMP-
STAT’2010, pp. 177–186, Springer, 2010.

[7] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic
optimization.,” Journal of machine learning research, vol. 12, no. 7, 2011.

[8] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint arXiv:1212.5701, 2012.

[9] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980,
2014.

[10] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive variance reduction,”
in Advances in neural information processing systems, pp. 315–323, 2013.

[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propaga-
tion,” tech. rep., California Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,”
Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[13] Y. LeCun, D. Touresky, G. Hinton, and T. Sejnowski, “A theoretical framework for back-propagation,” in
Proceedings of the 1988 connectionist models summer school, vol. 1, pp. 21–28, CMU, Pittsburgh, 1988.

[14] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale machine learning,” SIAM
Review, vol. 60, no. 2, pp. 223–311, 2018.

[15] P. Toulis, D. Tran, and E. Airoldi, “Towards stability and optimality in stochastic gradient descent,” in
Artificial Intelligence and Statistics, pp. 1290–1298, 2016.

11

[16] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient descent is diffi-
cult,” IEEE transactions on neural networks, vol. 5, no. 2, pp. 157–166, 1994.

[17] Q. Li, T. Lin, and Z. Shen, “Deep learning via dynamical systems: An approximation perspective,” arXiv
preprint arXiv:1912.10382, 2019.

[18] W. E, “A proposal on machine learning via dynamical systems,” Communications in Mathematics and
Statistics, vol. 5, no. 1, pp. 1–11, 2017.

[19] P. Parpas and C. Muir, “Predict globally, correct locally: Parallel-in-time optimal control of neural net-
works,” arXiv preprint arXiv:1902.02542, 2019.

[20] D. Zhang, T. Zhang, Y. Lu, Z. Zhu, and B. Dong, “You only propagate once: Painless adversarial training
using maximal principle,” arXiv preprint arXiv:1905.00877, 2019.

[21] E. Haber and L. Ruthotto, “Stable architectures for deep neural networks,” Inverse Problems, vol. 34,
no. 1, p. 014004, 2017.

[22] B. Wang, B. Yuan, Z. Shi, and S. J. Osher, “Enresnet: Resnet ensemble via the Feynman-Kac formalism,”
arXiv preprint arXiv:1811.10745, 2018.

[23] L. Zhang, W. E, and L. Wang, “Monge-ampère flow for generative modeling,” 2018.

[24] L. Ruthotto and E. Haber, “Deep neural networks motivated by partial differential equations,” Journal of
Mathematical Imaging and Vision, pp. 1–13, 2019.

[25] E. Haber, L. Ruthotto, E. Holtham, and S.-H. Jun, “Learning across scales-a multiscale method for con-
volution neural networks,” arXiv preprint arXiv:1703.02009, 2017.

[26] P. Chaudhari, A. Oberman, S. Osher, S. Soatto, and G. Carlier, “Deep relaxation: partial differential
equations for optimizing deep neural networks,” Research in the Mathematical Sciences, vol. 5, no. 3,
p. 30, 2018.

[27] P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi, C. Borgs, J. Chayes, L. Sagun, and
R. Zecchina, “Entropy-sgd: Biasing gradient descent into wide valleys,” Journal of Statistical Mechanics:
Theory and Experiment, vol. 2019, no. 12, p. 124018, 2019.

[28] G. Pavliotis and A. Stuart, Multiscale methods: averaging and homogenization. Springer Science &
Business Media, 2008.

[29] A. L. Blum and R. L. Rivest, “Training a 3-node neural network is np-complete,” Neural Networks, vol. 5,
no. 1, pp. 117–127, 1992.

[30] I. Safran and O. Shamir, “Spurious local minima are common in two-layer relu neural networks,” in
International Conference on Machine Learning, pp. 4433–4441, PMLR, 2018.

[31] C. Lemaréchal, “Cauchy and the gradient method,” Doc Math Extra, vol. 251, p. 254, 2012.

[32] H. B. Curry, “The method of steepest descent for non-linear minimization problems,” Quarterly of Applied
Mathematics, vol. 2, no. 3, pp. 258–261, 1944.

[33] R. Sun, “Optimization for deep learning: theory and algorithms,” arXiv preprint arXiv:1912.08957, 2019.

[34] S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods for nonconvex stochastic program-
ming,” SIAM Journal on Optimization, vol. 23, no. 4, pp. 2341–2368, 2013.

[35] V. S. Borkar and S. K. Mitter, “A strong approximation theorem for stochastic recursive algorithms,”
Journal of optimization theory and applications, vol. 100, no. 3, pp. 499–513, 1999.

[36] M. Welling and Y. W. Teh, “Bayesian learning via stochastic gradient Langevin dynamics,” in Proceedings
of the 28th international conference on machine learning (ICML-11), pp. 681–688, 2011.

[37] B. Gidas, “Global optimization via the Langevin equation,” in 1985 24th IEEE Conference on Decision
and Control, pp. 774–778, IEEE, 1985.

[38] H. J. Kushner, “Asymptotic global behavior for stochastic approximation and diffusions with slowly de-
creasing noise effects: global minimization via Monte Carlo,” SIAM Journal on Applied Mathematics,
vol. 47, no. 1, pp. 169–185, 1987.

12

[39] T.-S. Chiang, C.-R. Hwang, and S. J. Sheu, “Diffusion for global optimization in Rˆn,” SIAM Journal on
Control and Optimization, vol. 25, no. 3, pp. 737–753, 1987.

[40] C.-R. Hwang, “Laplace’s method revisited: weak convergence of probability measures,” The Annals of
Probability, pp. 1177–1182, 1980.

[41] S. Geman and C.-R. Hwang, “Diffusions for global optimization,” SIAM Journal on Control and Opti-
mization, vol. 24, no. 5, pp. 1031–1043, 1986.

[42] J. Cho, J. Kwon, and B.-W. Hong, “Adaptive regularization via residual smoothing in deep learning
optimization,” IEEE Access, vol. 7, pp. 122889–122899, 2019.

[43] L. Debnath, Nonlinear partial differential equations for scientists and engineers. Springer Science &
Business Media, 2011.

[44] C. Baldassi, A. Ingrosso, C. Lucibello, L. Saglietti, and R. Zecchina, “Local entropy as a measure for
sampling solutions in constraint satisfaction problems,” Journal of Statistical Mechanics: Theory and
Experiment, vol. 2016, p. 023301, Feb 2016.

[45] J. D. Cole, “On a quasi-linear parabolic equation occurring in aerodynamics,” Quarterly of Applied Math-
ematics, vol. 9, no. 3, pp. 225–236, 1951.

[46] E. Hopf, “The partial differential equation ut + uux = uxx,” Communications on Pure and Applied Math-
ematics, vol. 3, no. 3, pp. 201–230, 1950.

[47] G. A. Pavliotis, Stochastic processes and applications: diffusion processes, the Fokker-Planck and
Langevin equations, vol. 60. Springer, 2014.

[48] G. Mil’shtejn, “Approximate integration of stochastic differential equations,” Theory of Probability & Its
Applications, vol. 19, no. 3, pp. 557–562, 1975.

13

	Introduction
	Continuous-time stochastic optimization in deep neural networks (DNNs)
	Non-convex optimization problems in DNNs
	Gradient-based optimization
	Continuous-time stochastic optimization
	Regularization of the loss function

	The viscous Burgers' equation as the model for a highway traffic flow
	Nonlinear parabolic PDEs and the local entropy
	The local entropy via homogenization for SDEs
	Sampling for a discrete-time solution

	Conclusion
	References

