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Abstract— In this work, we propose the SCORE (self-
concordant regularization) framework for (overparameterized)
unconstrained minimization problems by incorporating second-
order information in the Newton decrement framework for convex
optimization. We propose the generalized Gauss-Newton with
Self-Concordant Regularization (GGN-SCORE) algorithm that
updates the network parameters each time it receives a new in-
put batch. The proposed algorithm exploits the structure of the
second-order information in the Hessian matrix, thereby reduc-
ing the training computational overhead. Numerical experiments
show the efficiency of our method and its fast convergence, which
compare favorably against baseline first-order methods and a
quasi-Newton method.
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I. INTRODUCTION

The results presented in this work apply to a pseudo-online
optimization algorithm based on solving a regularized uncon-
strained minimization problem for machine learning. We pro-
pose a new self-concordant regularization (SCORE) scheme
for efficiently choosing optimal variables of the model involv-
ing smooth optimization objectives, where one of the objective
functions regularizes the model’s variable vector and hence
avoid overfitting, ultimately improving the model’s ability to
generalize well.

Unlike first-order methods such as stochastic gradient de-
scent (SGD) [1, 2] and its variants [3, 4, 5, 6] that only make
use of first-order information through the function gradients,
second-order methods [7, 8, 9, 10, 11, 12, 13] attempt to in-
corporate, in some way, second-order information in their ap-
proach, through the Hessian matrix or the Fisher information
matrix (FIM). It is well known that this generally provides
second-order methods with better (quadratic) convergence
than a typical first-order method which only converges lin-
early in the neighbourhood of the solution [14].

Despite their convergence advantage over first-order meth-
ods, second-order methods result into highly prohibitive com-
putations. By an extra assumption that the regularization func-
tion is self-concordant, we propose GGN-SCORE algorithm
(see Algorithm 1) that updates, while reducing computational
overhead, the minimization variables in the framework of
the local norm ∥ · ∥x (a.k.a., Newton decrement) of a self-
concordant function f (x) such as seen in [15]. Our proposed
scheme does not require that the output-fit loss function is
self-concordant, which in many applications does not hold
[16]. Instead, we exploit the greedy descent provision of self-
concordant functions, via regularization, to achieve a fast con-
vergence rate while maintaining feasible assumptions on the
combined objective function (from an application point of
view). The experimental results provide an interesting oppor-
tunity for future investigation and scaling of the proposed
method for large-scale machine learning problems, as the
experiments involves training an overparameterized neural
network: Overparameterization is an interesting and desir-
able property, and a topic of concern for machine learning
[17, 18, 19, 20].

II. PROBLEM STATEMENT

Let {(xxxn,yyyn)}N
n=1 be a sequence of input and output sample

pairs, xxxn ∈ Rnp ,yyyn ∈ Rd , where np is the number of features
and d is the number of targets. We assume a model f (θθθ ;xxxn),
defined by f : Rnw ×Rnp →Y and parameterized by the vector
of variables θθθ ∈ Rnw . Suppose that f (θθθ ;xxxn) outputs the value
ŷyyn ∈ Rd , the regularized minimization problem we want to
solve is

min
θθθ

L (θθθ) :=
N

∑
n=1

ℓ(yyyn, ŷyyn)︸ ︷︷ ︸
g(θθθ)

+λ

nw

∑
j=1

r j(θθθ j)︸ ︷︷ ︸
h(θθθ)

, (1)

where ℓ : Rd ×Rd →R is a twice-differentiable output-fit loss
function, r j : R → R, j = 1, . . . ,nw, define a regularization
term on θθθ , g(θθθ) : Rnw → R, h(θθθ) : Rnw → R. We assume



that the regularization function h(θθθ), scaled by the parameter
λ > 0, is Mh-self-concordant.

III. ALGORITHM

At each oracle call (Algorithm 1), we define

ggg(θθθ k) = ∂θθθ L (θθθ k) = JJJT eee (2)

HHH ≈ JJJT QQQJJJ+λHHHh, (3)

where QQQ ∈ RM×M and HHHh ∈ Rnw×nw are diagonal matrices
with the second derivatives of the output-fit loss with respect
to the outputs (augmented with a vector of zeros) and the
second derivatives of h with respect to θθθ , respectively, as
their diagonal entries. M = dm+ 1, m is some mini-batch
size, JJJ ∈ RM×nw is an augmented Jacobian of the objective
functions with respect to θθθ , eee ∈ RM is the Jacobian of the
output-fit loss function augmented with a vector of ones.

Algorithm 1 GGN-SCORE

1: Input: variables vector θθθ k, data {(xxxn,yyyn)}m
n=1, HHHh, QQQ, JJJ,

eee, parameters αk > 0,Mh,λ
2: Output: variables vector θθθ k+1
3: Compute gggh = ∂θθθ k h(θθθ k)

4: Choose ηk =
〈

gggh,HHH
−1
h gggh

〉1/2

5: Set ρk =
αk

1+Mhηk

6: Set GGG = HHH−1
h JJJT

(
λ III +QQQJJJHHH−1

h JJJT
)−1

eee
7: Compute θθθ k+1 = θθθ k −ρkGGG

IV. EXPERIMENTS
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Fig. 1: Convergence curves for the non-convex neural network training

Figure 1 compares convergence results between our algo-
rithm and three other literature algorithms, with ℓ(yyyn, ŷyyn) =
1
2 ∑

N
n=1 yyyn log

(
1
ŷyyn

)
+ (111 − yyyn) log

(
1

111−ŷyyn

)
and the pseudo-

Huber regularizer hµ(θθθ) (left), hµ(θθθ) :=
√

µ2 +θθθ
2 − µ ,

and the 2-norm regularizer h2(θθθ) (right), h2(θθθ) = ∥θθθ∥2 :=√
∑

nw
i=1 |θi|2, using the mushrooms dataset from LIBSVM

repository [21]. These results show the superiority of our al-
gorithm to the other algorithms under the given assumptions.
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