
Quasi-Newton methods for solving nonsmooth
optimization problems in learning and control

Adeyemi Damilare Adeoye
Supervisor: Prof. Alberto Bemporad

PhD Thesis Defence
IMT School for Advanced Studies Lucca, Italy

Jury: Prof. Mikael Johansson (KTH Royal Institute of Technology,
Stockholm, Sweden), Prof. Panagiotis Patrinos (KU Leuven, Leuven,
Belgium), Dr. Puya Latafat (IMT School for Advanced Studies Lucca,

Italy)

June 3, 2025

Outline

Introduction: Neural networks for function approximation

RNN for Markovian state-space dynamics

DCRNN: An RNN for Markovian state-space approximation

iSQPRL: An inexact SQP approach for recurrent learning

Recurrent-Control Neural Network

Generalized Gauss-Newton with self-concordant regularization

Conclusions and future directions

2

Some challenges in modeling, optimizing, and
controlling the physical entities of a nonlinear

dynamical system from first principles

As an example, some questions that concern arterial blood flow
with no known straightforward answers:
 is a Newtonian or non-Newtonian model more appropriate?
 is there any universally accepted model for blood flow?
 how to choose parameters for any given model?
 efficient numerical methods for solving the governing equations

under any given circumstance?
 are there efficient (numerical) methods to handle the

high-complexity of realistic geometries?

3

Some challenges in modeling, optimizing, and
controlling the physical entities of a nonlinear

dynamical system from first principles

Notable remarks:
 known fact: blood is a non-Newtonian fluid

(its viscosity changes with the wall shear rate)
 no known non-Newtonian model accurately describes the rheological

behaviour of blood [1]

 governing equations computationally intensive to solve
(a new problem needs to be solved for each new configuration)

 studies suggest that a Newtonian model can be a good
approximation (especially for large arteries) [2][1]

...still... there is no universally accepted model for blood flow!
[1] Johnston et al. 2006
[2] Johnston et al. 2004

4

A search for fast and accurate approximations of
complex dynamical models

now, on the modeling aspect:

from (noisy) experimental data, can we “learn” models that
provide real-time approximations to explicit (constitutive) models
while accurately capturing the high-complexities in them?

noisy

data approximator
predictions

physical

system

(partially) unknown

5

Neural networks for function approximation

Neural network:

 powerful tool for approximating
complex functions from data

M(u; θ) = σL(WLσL−1(WL−1 · · · σ1(W1u + b1)

· · · + bL−1) + bL)

hidden maps

output input

MNIST [3] (28× 28 pixels per image), CIFAR-10/100 [4] (32× 32 pixels
per image), ImageNet [5] (224× 224 pixels per image), . . .

As per classical theory for 1-Lipschitz functions [6], we would need
O(1/ε784) parameters to achieve a uniform ε-error for MNIST.

[3] LeCun et al. 1998
[4] Krizhevsky, Hinton, et al. 2009
[5] Deng et al. 2009
[6] DeVore 1998

6

Neural networks for function approximation

Neural network:

 data {(ui , yi)}mi=1
modelM(u; θ), u = [u1, . . . , um]⊤
predictions ŷi =M(ui ; θ)

M(u; θ) = σL(WLσL−1(WL−1 · · · σ1(W1u + b1)

· · · + bL−1) + bL)

hidden maps

output input

MNIST [3] (28× 28 pixels per image), CIFAR-10/100 [4] (32× 32 pixels
per image), ImageNet [5] (224× 224 pixels per image), . . .

As per classical theory for 1-Lipschitz functions [6], we would need
O(1/ε784) parameters to achieve a uniform ε-error for MNIST.

[3] LeCun et al. 1998
[4] Krizhevsky, Hinton, et al. 2009
[5] Deng et al. 2009
[6] DeVore 1998

6

Neural networks for function approximation

Neural network:

 θ ≜ {(Wl , bl)}Ll=1 is learned by
empirical risk minimization:

min
θ∈C⊆Rn

f (θ) ≜ 1
m

m∑
i=1

ℓ (yi , ŷi)

M(u; θ) = σL(WLσL−1(WL−1 · · · σ1(W1u + b1)

· · · + bL−1) + bL)

hidden maps

output input

MNIST [3] (28× 28 pixels per image), CIFAR-10/100 [4] (32× 32 pixels
per image), ImageNet [5] (224× 224 pixels per image), . . .

As per classical theory for 1-Lipschitz functions [6], we would need
O(1/ε784) parameters to achieve a uniform ε-error for MNIST.

[3] LeCun et al. 1998
[4] Krizhevsky, Hinton, et al. 2009
[5] Deng et al. 2009
[6] DeVore 1998

6

Neural networks for function approximation

Neural network:
 θ ≜ {(Wl , bl)}Ll=1 is learned by

empirical risk minimization:

min
θ∈C⊆Rn

f (θ) ≜ 1
m

m∑
i=1

ℓ (yi , ŷi)

 breaks the classical curse of
dimensionality [3]

M(u; θ) = σL(WLσL−1(WL−1 · · · σ1(W1u + b1)

· · · + bL−1) + bL)

hidden maps

output input

MNIST [4] (28× 28 pixels per image), CIFAR-10/100 [5] (32× 32 pixels
per image), ImageNet [6] (224× 224 pixels per image), . . .

As per classical theory for 1-Lipschitz functions [7], we would need
O(1/ε784) parameters to achieve a uniform ε-error for MNIST.

[3] Bellman 1952; Novak and Woźniakowski 2009
[4] LeCun et al. 1998
[5] Krizhevsky, Hinton, et al. 2009
[6] Deng et al. 2009
[7] DeVore 1998

6

Neural networks for function approximation

Neural network:
 θ ≜ {(Wl , bl)}Ll=1 is learned by

empirical risk minimization:

min
θ∈C⊆Rn

f (θ) ≜ 1
m

m∑
i=1

ℓ (yi , ŷi)

 breaks the classical curse of
dimensionality [3]

M(u; θ) = σL(WLσL−1(WL−1 · · · σ1(W1u + b1)

· · · + bL−1) + bL)

hidden maps

output input

MNIST [4] (28× 28 pixels per image), CIFAR-10/100 [5] (32× 32 pixels
per image), ImageNet [6] (224× 224 pixels per image), . . .

As per classical theory for 1-Lipschitz functions [7], we would need
O(1/ε784) parameters to achieve a uniform ε-error for MNIST.

[3] Bellman 1952; Novak and Woźniakowski 2009
[4] LeCun et al. 1998
[5] Krizhevsky, Hinton, et al. 2009
[6] Deng et al. 2009
[7] DeVore 1998

6

Neural networks for function approximation

Neural network:
 θ ≜ {(Wl , bl)}Ll=1 is learned by

empirical risk minimization:

min
θ∈C⊆Rn

f (θ) ≜ 1
m

m∑
i=1

ℓ (yi , ŷi)

 breaks the classical curse of
dimensionality [3]

M(u; θ) = σL(WLσL−1(WL−1 · · · σ1(W1u + b1)

· · · + bL−1) + bL)

hidden maps

output input

MNIST [4] (28× 28 pixels per image), CIFAR-10/100 [5] (32× 32 pixels
per image), ImageNet [6] (224× 224 pixels per image), . . .

As per classical theory for 1-Lipschitz functions [7], we would need
O(1/ε784) parameters to achieve a uniform ε-error for MNIST.

[3] Bellman 1952; Novak and Woźniakowski 2009
[4] LeCun et al. 1998
[5] Krizhevsky, Hinton, et al. 2009
[6] Deng et al. 2009
[7] DeVore 1998

6

Neural networks for function approximation

Neural network:
 θ ≜ {(Wl , bl)}Ll=1 is learned by

empirical risk minimization:

min
θ∈C⊆Rn

f (θ) ≜ 1
m

m∑
i=1

ℓ (yi , ŷi)

 breaks the classical curse of
dimensionality [3]

M(u; θ) = σL(WLσL−1(WL−1 · · · σ1(W1u + b1)

· · · + bL−1) + bL)

hidden maps

output input

MNIST [4] (28× 28 pixels per image), CIFAR-10/100 [5] (32× 32 pixels
per image), ImageNet [6] (224× 224 pixels per image), . . .

As per classical theory for 1-Lipschitz functions [7], we would need
O(1/ε784) parameters to achieve a uniform ε-error for MNIST.
[3] Bellman 1952; Novak and Woźniakowski 2009
[4] LeCun et al. 1998
[5] Krizhevsky, Hinton, et al. 2009
[6] Deng et al. 2009
[7] DeVore 1998

6

Neural networks for function approximation

As per classical theory for 1-Lipschitz functions [8], we would need
O(1/ε784) parameters to achieve a uniform ε-error for MNIST.

 yet, deep neural networks perform astonishingly well in this
high-dimensional regime!

 why?

. . . some explanations exist[9], e.g., manifold assumption,
random sampling, PDE assumptions,. . .

[8] DeVore 1998
[9] Berner et al. 2021.

7

Neural networks for function approximation

As per classical theory for 1-Lipschitz functions [8], we would need
O(1/ε784) parameters to achieve a uniform ε-error for MNIST.

 yet, deep neural networks perform astonishingly well in this
high-dimensional regime!

 why? . . . some explanations exist[9], e.g., manifold assumption,
random sampling, PDE assumptions,. . .

[8] DeVore 1998
[9] Berner et al. 2021.

7

Neural networks for dynamical systems
 compared to FNNs, RNNs can capture temporal dependencies in

data via feedback loops [10]

physical

system

noisy

data

hidden (recurrent) maps

predictions

(recurrent)

neural network

(partially) unknown

[10] Rumelhart, Hinton, and Williams 1986
8

Neural networks for dynamical systems

physical

system

noisy

data

hidden (recurrent) maps

predictions

(recurrent)

neural network

(partially) unknown

The vanilla RNN in state-space
form:
xt+1 = σx(Wxuut +Wxxxt + bx)
ŷt = σy(Wyxxt + by)

x0 x1 x2 xt↼−−⇁
roll

unroll
xt

Hidden
state

ŷ0

u0

ŷ1

u1

ŷ2

u2

ŷt

ut

ŷtOutput

utInput

. . .

. . .

8

The approach (Motivation)

Architecture: a structured RNN for two-stage POMDP
 system identification: train the RNN to approximate the

environment’s Markovian state-space dynamics;
 optimal control policy selection by a FNN

The two stages combined constitutes the "agent’s model".

Learning issues with BPTT algorithms:
 vanishing- and exploding-gradients[10]

 slow convergence of common BPTT algorithms[11]

Two common remedies: (see Ref.[12])
 (approximate) second-order algorithms, e.g., generalized

Gauss-Newton (GGN), Levenberg-Marquardt (LM), CG, etc....
 nonlinear sequential state-estimation techniques, e.g., EKF

[10] Bengio, Simard, and Frasconi 1994; Hochreiter 1998.
[11] Atiya and Parlos 2000.
[12] Adeoye and Bemporad 2025.

9

The approach (Motivation)

Architecture: a structured RNN for two-stage POMDP
 system identification: train the RNN to approximate the

environment’s Markovian state-space dynamics;
 optimal control policy selection by a FNN

The two stages combined constitutes the "agent’s model".
Learning issues with BPTT algorithms:
 vanishing- and exploding-gradients[10]

 slow convergence of common BPTT algorithms[11]

Two common remedies: (see Ref.[12])
 (approximate) second-order algorithms, e.g., generalized

Gauss-Newton (GGN), Levenberg-Marquardt (LM), CG, etc....
 nonlinear sequential state-estimation techniques, e.g., EKF

[10] Bengio, Simard, and Frasconi 1994; Hochreiter 1998.
[11] Atiya and Parlos 2000.
[12] Adeoye and Bemporad 2025.

9

The approach (Motivation)

Architecture: a structured RNN for two-stage POMDP
 system identification: train the RNN to approximate the

environment’s Markovian state-space dynamics;
 optimal control policy selection by a FNN

The two stages combined constitutes the "agent’s model".
Learning issues with BPTT algorithms:
 vanishing- and exploding-gradients[10]

 slow convergence of common BPTT algorithms[11]

Two common remedies: (see Ref.[12])
 (approximate) second-order algorithms, e.g., generalized

Gauss-Newton (GGN), Levenberg-Marquardt (LM), CG, etc....
 nonlinear sequential state-estimation techniques, e.g., EKF

[10] Bengio, Simard, and Frasconi 1994; Hochreiter 1998.
[11] Atiya and Parlos 2000.
[12] Adeoye and Bemporad 2025.

9

RNN for Markovian state-space dynamics

Consider an RNN model of the form:
xt+1 = σx(Wxuut +Wxyyt +Wxxxt + bx)
ŷt = σy(Wyxxt + by)

σx : a nonlinear function (element-wise)
ut ∈ Rnu : input at time t to the RNN
yt ∈ Rny : "observable" output at time t
xt ∈ Rnx : RNN hidden state at time t
ŷt ∈ Rny : RNN prediction at time t
θx ≜ vec([Wxu Wxy Wxx bx]) ∈ Rnθx

θy ≜ vec([Wyx by]) ∈ Rnθy

e.g., an agent uses what it perceives of yt for
future predictions/actions

A World Model.[13]

Humans develop a mental model of the world based on what
they are able to perceive with their limited senses.[14]

[13] McCloud 1993; Tumblr 2012
[14] Ha and Schmidhuber 2018.

10

RNN for Markovian state-space dynamics

Consider an RNN model of the form:
xt+1 = σx(Wxuut +Wxyyt +Wxxxt + bx)
ŷt = σy(Wyxxt + by)

σx : a nonlinear function (element-wise)
ut ∈ Rnu : input at time t to the RNN
yt ∈ Rny : "observable" output at time t
xt ∈ Rnx : RNN hidden state at time t
ŷt ∈ Rny : RNN prediction at time t
θx ≜ vec([Wxu Wxy Wxx bx]) ∈ Rnθx

θy ≜ vec([Wyx by]) ∈ Rnθy

e.g., an agent uses what it perceives of yt for
future predictions/actions A World Model.[13]

Humans develop a mental model of the world based on what
they are able to perceive with their limited senses.[14]

[13] McCloud 1993; Tumblr 2012
[14] Ha and Schmidhuber 2018.

10

DCRNN: An RNN for system identification

x̂0 x1 x̂1 xt x̂t xt+1 x̂t+1 xt+2 x̂t+2

ŷ1

Wyx

by ŷt

Wyx

by ŷt+1

Wyx

by ŷt+2

Wyx

by

y0

Wxy

y1

Wxy

yt

Wxy

u0

Wxu

bx

ut−1

Wxu

bx

ut

Wxu

bx

ut+1

Wxu

bx

ut ŷt+1

Wxy

ut+1 ŷt+2

Wxy

Inx Inx InxWxx Wxx Wxx Wxx

Unrolled RNN with dynamically consistent overshooting (DCRNN).

State-space equations of DCRNN[15]:
xt+1 = σx(Ix̂t +Wxuut + bx),
ŷt = Wyxxt + by

x̂t =
{
Wxxxt +Wxyyt , ∀0 ≤ t ≤ m−,

Wxxxt +Wxy ŷt , ∀m− < t ≤ N ,

N = m− +m+, m− is the finite truncation time of the RNN unrolling
and m+ > 1 is the number of overshooting time steps into the future.

[15] Zimmermann et al. 2006.
11

Learning the DCRNN – Optimization problem

≈
I/O

process

?

u +

−

y

ŷ

e

I/O
process

Learning
algorithm

u

+
−

y

ŷ
e

⇒
I/O

process

Learned
RNN model

u +

−

y

ŷ

e

Learn xt , θy, θx in parallel by solving equality-constrained optimization
problem[16]: (RNN training problem = optimal control problem)[17]

min
z

f (z) ≜
N−1∑
t=0

(yt − ŷt)2 +R(x0, θx , θy)

s.t. ct(z) = 0, ∀t = 0, . . . ,N ,

with ct(z) ≜ xt+1 − σx(Ix̂t +Wxuut + bx), z ≜ [x⊤1 · · · x⊤N−1 x⊤0 θ⊤y θ⊤x]⊤

x̂t =
{
Wxxxt +Wxyyt , ∀0 ≤ t ≤ m−,

Wxxxt +Wxy ŷt , ∀m− < t ≤ N − 1

[16] Adeoye and Bemporad 2025.
[17] Bemporad 2022; Bemporad 2023.

12

SQP approach

1. Define the Lagrangian:

L(z, λ) ≜ f (z)− λ⊤c(z), λ ∈ Rm

2. Iteratively model the QP subproblem (iSQPRL):

min
dz

1
2d

⊤
z Hkdz +∇f (zk)⊤dz

s.t. Jkdz + c(zk) = 0,

with Jk ≡ ∇c(zk) = [∇c0(zk) · · · ∇cN−1(zk)]⊤ ∈ Rm×n,
Hk ≡ ∇2L(zk , λk).

13

Newton-KKT solution

1. Define necessary (KKT) optimality conditions:

F̃(zk , λk) ≜
[
∇L(zk , λk)

c(zk)

]
=
[
0
0

]

2. Derive the Newton-KKT system: For an optimal multiplier λ̃, we have[
Hk J⊤

k
Jk 0

]
︸ ︷︷ ︸

Ak

[
dz
−λ̃

]
︸ ︷︷ ︸

dk

=
[
−gk
−ck

]
︸ ︷︷ ︸

bk

3. Solve the system for dk :
 use a (modified) BFGS update of Hk

 solve the resulting system using the restarted GMRES[18]

[18] Saad and Schultz 1986.
14

Newton-KKT solution

1. Define necessary (KKT) optimality conditions:

F̃(zk , λk) ≜
[
∇L(zk , λk)

c(zk)

]
=
[
0
0

]
2. Derive the Newton-KKT system: For an optimal multiplier λ̃, we have[

Hk J⊤
k

Jk 0

]
︸ ︷︷ ︸

Ak

[
dz
−λ̃

]
︸ ︷︷ ︸

dk

=
[
−gk
−ck

]
︸ ︷︷ ︸

bk

3. Solve the system for dk :
 use a (modified) BFGS update of Hk

 solve the resulting system using the restarted GMRES[18]

[18] Saad and Schultz 1986.
14

Newton-KKT solution

1. Define necessary (KKT) optimality conditions:

F̃(zk , λk) ≜
[
∇L(zk , λk)

c(zk)

]
=
[
0
0

]
2. Derive the Newton-KKT system: For an optimal multiplier λ̃, we have[

Hk J⊤
k

Jk 0

]
︸ ︷︷ ︸

Ak

[
dz
−λ̃

]
︸ ︷︷ ︸

dk

=
[
−gk
−ck

]
︸ ︷︷ ︸

bk

3. Solve the system for dk :
 use a (modified) BFGS update of Hk

 solve the resulting system using the restarted GMRES[18]

[18] Saad and Schultz 1986.
14

Local convergence

A local two-step superlinear convergence with Hk ≻ 0:

Lemma (Powell 1978b, Theorem 1)

Under twice-differentiability, compactness and convexity assumptions, we
have

lim
k→∞

∥(Pk(Hk −∇2L∗)Pk)dz∥
∥dz∥

= 0 implies lim
l→∞

∥zl+1 − z∗∥
∥zl−1 − z∗∥ = 0,

where Pk is the projection matrix Pk = I − Jk(J⊤
k Jk)−1J⊤

k .

Requires only that a projection of each Hk is close to a projection of
∇2L∗.

15

Globalization (line-search)

For globalization, we define a merit function such as

M1(zk ; ρk) = fk +
ρk
ω
∥ck∥1,

ρk
ω

> 0

with the heuristic choice ω ≥ 2.
Ideally, we want some αk > 0 such that dk satisfies

M1(zk + αkdz ; ρk) ≤M1(zk ; ρk) + ναk∇dzM1(zk ; ρk)

0 < ν ≤ 0.5 is a small value and ∇dzM1(zk ; ρk) is the directional
derivative ofM1 along dz .
Finally, we update (z, λ) using

zk+1 = zk + αkdz , λk+1 = λk + αk(λ̃− λk). (3)

16

Globalization conditions for inexact SQP

 key requirement: account for the error rk due to inexactness:
Akdk = bk + rk

 thanks to the restarted GMRES, we have ∥rk∥ ≤ σ4∥bk∥, 0 < σ4 < 1

Proposition (Partial)

If we choose ρk > ω∥λ̃∥∞, then dz is guaranteed to be a descent
direction forM1, and ∇dzM1(zk ; ρk) < 0 at nonstationary points of
iSQPRL problem.

17

Globalization conditions for inexact SQP

Corollary

The following property holds:

ρk ≥
ω

2

[
g⊤k dz + d⊤

z Hkdz − d⊤
z rz

∥ck∥1 − ∥rλ∥1
+ ∥λ̃∥∞

]
. (4)

choose ω ≥ 2.

Our safeguarding rule, slightly modifying Powell 1978a, is (for ρ̄ > 0)

ρk =
{
max{ω∥λ̃∥∞ + ρ̄, 1

ω (ρk−1 + ω∥λ̃∥∞ + ρ̄)},∀k ̸= 1
ω∥λ̃∥∞ + ρ̄, if k = 1.

(5)

18

Convergence to a stationary point

Theorem
Let ρk > ω∥λ̃∥∞ hold according to the safeguarding rule. Let {λk} be
bounded and {αk} be bounded below by some positive constant. Then
the sequence of iterates {zk}, starting from an arbitary point, converges
to a stationary point ofM1.

A direct consequence of the descent property ofM1 at dk such that the
line-search succeeds for all k. (Practical refinements are needed!)

 To avoid so-called "Maratos effect", incorporate, e.g., a
nonmonotone line-search procedure.

Q-superlinear convergence preserved! [19] (Even though nowM1 is not
forced to reduce at initial steps.)

[19] Panier and Tits 1991
19

Convergence to a stationary point

Theorem
Let ρk > ω∥λ̃∥∞ hold according to the safeguarding rule. Let {λk} be
bounded and {αk} be bounded below by some positive constant. Then
the sequence of iterates {zk}, starting from an arbitary point, converges
to a stationary point ofM1.

A direct consequence of the descent property ofM1 at dk such that the
line-search succeeds for all k. (Practical refinements are needed!)

 To avoid so-called "Maratos effect", incorporate, e.g., a
nonmonotone line-search procedure.

Q-superlinear convergence preserved! [19] (Even though nowM1 is not
forced to reduce at initial steps.)
[19] Panier and Tits 1991

19

Numerical illustration

RL problem (mountain-car env): The car’s motion is described by

ȳt+1 = ȳt + ˙̄yt , ˙̄yt+1 = ˙̄yt + 0.001ut − 0.0025 cos(3ȳt),

yt = [ȳt , ˙̄yt], −1.2 ≤ ȳt ≤ 0.5, −0.07 ≤ ˙̄yt ≤ 0.07, ȳt : car’s position at
time t, ˙̄yt : car’s velocity at time t, ut ∈ {−1, 0, 1}: control action
(applied force), σx = tanh, σy = identity; bounds on yt enforced through
tai ,bi (ŷi) = bi+ai

2 + bi−ai
2

(
2ŷi
1+ŷi

)
.

20

Numerical illustration

CSTR problem (ethylene oxidation): The reactor’s dynamics are
described by

˙̄y1 = u1(1− ȳ1ȳ4)
˙̄y2 = u1(u2 − ȳ2ȳ4)−A1eγ1/ȳ4(ȳ2ȳ4)0.5 −A2eγ2/ȳ4(ȳ2ȳ4)0.25

˙̄y3 = −u1ȳ3ȳ4 +A1eγ1/ȳ4(ȳ2ȳ4)0.5 −A3eγ3/ȳ4(ȳ3ȳ4)0.5

˙̄y4 = u1
ȳ1

(1− ȳ4) +
B1

ȳ1
eγ1/ȳ4(ȳ2ȳ4)0.5 +

B2

ȳ1
eγ2/ȳ4(ȳ2ȳ4)0.25

+ B3

ȳ1
eγ3/ȳ4(ȳ3ȳ4)0.5 −

B4

ȳ1
(ȳ4 − Tc)

yt = [ȳ1, ȳ2, ȳ3, ȳ4] represent the gas density, ethylene concentration,
ethylene oxide concentration, and temperature in the reactor;
ut = [u1, u2], where u1 is the feed volumetric flow rate and u2 is the
concentration of ethylene in the feed; 0.0704 ≤ u1 ≤ 0.7042,
0.2465 ≤ u2 ≤ 2.4648.

21

Numerical illustration

 mountain-car environment:

0 500 1000 1500
epoch

10 3

10 2

10 1

M
SE

GRL(mr) [= 2]
GRL(mr) [= 50]
GRL(mr) [= 100]
GRL(mr) [= 200]
Adam
SGD
LBFGS
sLBFGS

BPTT
algorithm

Approximation
error (MSE) Iter CPU time [s]

SGD 5.6828 × 10−4 1500 5.6584 × 10
Adam 1.5821 × 10−4 1500 4.9532 × 10
LBFGS 7.1389 × 10−4 30 2.8670 × 100

sLBFGS 3.9884 × 10−4 1000 2.8071 × 10
GRL(m̂r), ω = 2 1.3451 × 10−4 200 6.4956 × 10
GRL(m̂r), ω = 50 1.2702 × 10−4 200 1.0091 × 102

GRL(m̂r), ω = 100 1.3164 × 10−4 200 5.6220 × 10
GRL(m̂r), ω = 200 1.2707 × 10−4 200 1.1914 × 102

 ethylene oxidation:

0 500 1000 1500
epoch

10 2

10 1

M
SE

GRL(mr) [= 2]
GRL(mr) [= 50]
GRL(mr) [= 100]
GRL(mr) [= 200]
Adam
SGD
LBFGS
sLBFGS

BPTT
algorithm

Approximation
error (MSE) Iter CPU time [s]

SGD 6.7298 × 10−3 1500 5.3596 × 10
Adam 8.3706 × 10−3 1500 4.4071 × 10
LBFGS 1.5866 × 10−3 46 1.6200 × 100

sLBFGS 1.4902 × 10−3 1000 1.9693 × 10
GRL(m̂r), ω = 2 1.6720 × 10−3 200 4.3819 × 10
GRL(m̂r), ω = 50 1.4948 × 10−3 200 4.2956 × 10
GRL(m̂r), ω = 100 1.5043 × 10−3 200 4.4190 × 10
GRL(m̂r), ω = 200 1.3642 × 10−3 200 4.5000 × 10

22

Recurrent-Control Neural Network

 fix the DCRNN weights and train an FNN model on top of it to
select future optimal control inputs ût :

ût = σu(Vuhσh(Vhx x̂t + bh) + bu), ∀m− ≤ t ≤ N

xt+1 =
{
σx(Ix̂t +Wxuut + bx), ∀0 ≤ t < m−

σx(Ix̂t +Wxu ût + bx), ∀m− < t ≤ N

Rt = Grσr(Wyxxt + by), ∀m− < t ≤ N

with x̂t =
{
Wxxxt +Wxyyt , 0 ≤ t ≤ m−

Wxxxt +Wxy ŷt , m− < t ≤ N

 Vuh ∈ Rnu×nh , Vhx ∈ Rnh×nx , bh ∈ Rnh , bu ∈ Rnu are FNN
parameters

 σu, σh are activation functions
 Gr , σr model problem’s reward/cost function Rt ≡ R(xt , ŷt ; ût)

23

x̂0 x1 x̂1 xt x̂t xt+1 x̂t+1 xt+2 x̂t+2

ŷ1

Wyx

by
ŷt

Wyx

by
ŷt+1

Wyx

by
ŷt+2

Wyx

by
ht

Vhx

bh

ût

Vuh

bu

ht+1

Vhx

bh

ût+1

Vuh

bu

ht+2

Vhx

bh

ût+2

Vuh

bu
Rt+1

Gr

Rt+2

Gr

y0

Wxy

y1

Wxy

yt

Wxy

u0

Wxu

bx

ut−1

Wxu

bx

ût

Wxu

bx

ŷt+1

Wxy

ût+1

Wxu

bx

ŷt+2

Wxy

Inx Inx InxWxx Wxx Wxx Wxx

Architecture of recurrent control neural network (RCNN).

24

Learning the FNN — Optimization problem

Define the finite-sum

f̄ (θu) ≜
N−1∑
t=m−

Rt ,

and consider the regularized optimization problem:

min
θu

f̄ (θu) + λr̄ r̄(θu),

where θu ≜ vec([Vuh Vhx bh bu]) ∈ Rnθu , λr̄ > 0.

 specifically, solve using a pseudo-online generalized Gauss-Newton
(GGN) algorithm for problems of the form

min
x∈Rn

f (x) ≜ f̄ (x) + g(x)

25

Learning the FNN — Optimization problem

Define the finite-sum

f̄ (θu) ≜
N−1∑
t=m−

Rt ,

and consider the regularized optimization problem:

min
θu

f̄ (θu) + λr̄ r̄(θu),

where θu ≜ vec([Vuh Vhx bh bu]) ∈ Rnθu , λr̄ > 0.

 specifically, solve using a pseudo-online generalized Gauss-Newton
(GGN) algorithm for problems of the form

min
x∈Rn

f (x) ≜ f̄ (x) + g(x)

25

Newton’s algorithm (g = 0)

Newton’s update: xk+1 = xk −∇2f (x)−1∇f (x)

 inverting ∇2f (x) ∈ Rn×n often highly expensive
 approximation: replace ∇2f (x) with Hf ≈ ∇2f (x)
 e.g., GGN approximation: Hf = J⊤

f Qf Jf
� let m = N −m−
� Jf ∈ Rm×n: Jacobian of û wrt xk
� Qf ∈ Rm×m: Hessian of f wrt û at xk

� GGN iteration:
xk+1 = xk − (J⊤

f Qf Jf)−1∇f (x)
� or,

xk+1 = xk − (J⊤
f Qf Jf)−1J⊤

f ef

� ∇f (xk) ≡ J⊤
f ef

� ef : gradient of f wrt û at xk

26

Newton’s algorithm (g = 0)

Newton’s update: xk+1 = xk −∇2f (x)−1∇f (x)

 inverting ∇2f (x) ∈ Rn×n often highly expensive
 approximation: replace ∇2f (x) with Hf ≈ ∇2f (x)
 e.g., GGN approximation: Hf = J⊤

f Qf Jf
� let m = N −m−
� Jf ∈ Rm×n: Jacobian of û wrt xk
� Qf ∈ Rm×m: Hessian of f wrt û at xk

� GGN iteration:
xk+1 = xk − (J⊤

f Qf Jf)−1∇f (x)
� or,

xk+1 = xk − (J⊤
f Qf Jf)−1J⊤

f ef

� ∇f (xk) ≡ J⊤
f ef

� ef : gradient of f wrt û at xk

26

Newton’s algorithm (g = 0)

Newton’s update: xk+1 = xk −∇2f (x)−1∇f (x)

 inverting ∇2f (x) ∈ Rn×n often highly expensive
 approximation: replace ∇2f (x) with Hf ≈ ∇2f (x)
 e.g., GGN approximation: Hf = J⊤

f Qf Jf
� let m = N −m−
� Jf ∈ Rm×n: Jacobian of û wrt xk
� Qf ∈ Rm×m: Hessian of f wrt û at xk

� GGN iteration:
xk+1 = xk − (J⊤

f Qf Jf)−1∇f (x)
� or,

xk+1 = xk − (J⊤
f Qf Jf)−1J⊤

f ef

� ∇f (xk) ≡ J⊤
f ef

� ef : gradient of f wrt û at xk

26

GGN algorithm (g smooth)

Consider g(x) smooth, e.g., g(x) = λ∥x∥22
 GGN algorithm:

xk+1 = xk − (J⊤
f Qf Jf +∇2 g(xk))−1(J⊤

f ef + ∇ g(xk))

 rewrite via our stylized augmentation:
 consider yi ∈ R, and define

J =
[

Jf
∇ g(xk)⊤

]
,Q =

[
Qf 0
0 0

]
, e =

[
ef
1

]

then[20]

xk+1 = xk − (J⊤
f Qf Jf +∇2 g(xk))−1(J⊤

f ef +∇ g(xk))
⇔
xk+1 = xk − (J⊤QJ +∇2 g(xk))−1J⊤e

[20] Adeoye and Bemporad 2023a.
27

GGN algorithm (g smooth)

Consider g(x) smooth, e.g., g(x) = λ∥x∥22
 GGN algorithm:

xk+1 = xk − (J⊤
f Qf Jf +∇2 g(xk))−1(J⊤

f ef + ∇ g(xk))
 rewrite via our stylized augmentation:
 consider yi ∈ R, and define

J =
[

Jf
∇ g(xk)⊤

]
,Q =

[
Qf 0
0 0

]
, e =

[
ef
1

]

then[20]

xk+1 = xk − (J⊤
f Qf Jf +∇2 g(xk))−1(J⊤

f ef +∇ g(xk))
⇔
xk+1 = xk − (J⊤QJ +∇2 g(xk))−1J⊤e

[20] Adeoye and Bemporad 2023a.
27

GGN algorithm (g smooth)

Consider g(x) smooth, e.g., g(x) = λ∥x∥22
 GGN algorithm:

xk+1 = xk − (J⊤
f Qf Jf +∇2 g(xk))−1(J⊤

f ef + ∇ g(xk))
 rewrite via our stylized augmentation:
 consider yi ∈ R, and define

J =
[

Jf
∇ g(xk)⊤

]
,Q =

[
Qf 0
0 0

]
, e =

[
ef
1

]

then[20]

xk+1 = xk − (J⊤
f Qf Jf +∇2 g(xk))−1(J⊤

f ef +∇ g(xk))
⇔
xk+1 = xk − (J⊤QJ +∇2 g(xk))−1J⊤e

[20] Adeoye and Bemporad 2023a.
27

GGN algorithm (g smooth)

GGN algorithm: xk+1 = xk − (J⊤QJ +∇2 g(xk))−1J⊤e

an interesting matrix identity[21]:
(D −VA−1B)−1VA−1 = D−1V (A− BD−1V)−1

so then (if m < n), cheaper updates for GGN:

xk+1 = xk −∇2 g(xk)−1J⊤(Im +QJ ∇2 g(xk)−1J⊤︸ ︷︷ ︸
m×m

)−1e

[21] Duncan 1944; Guttman 1946.
28

GGN algorithm (g smooth)

GGN algorithm: xk+1 = xk − (J⊤QJ +∇2 g(xk))−1J⊤e

an interesting matrix identity[21]:
(D −VA−1B)−1VA−1 = D−1V (A− BD−1V)−1

so then (if m < n), cheaper updates for GGN:

xk+1 = xk −∇2 g(xk)−1J⊤(Im +QJ ∇2 g(xk)−1J⊤︸ ︷︷ ︸
m×m

)−1e

[21] Duncan 1944; Guttman 1946.
28

Self-concordant optimization (g = 0)

Both pure Newton and GGN algorithms may fail globally
 global properties of Newton’s method are well-established for

(generalized) self-concordant functions
 a convex function f is (Mf , ν)-generalized self-concordant (SC) if∣∣∣〈∇3 f (x)[v1]v2, v2

〉∣∣∣ ≤ Mf ∥v2∥2x∥v1∥
ν−2
x ∥v1∥3−ν ,∀v1, v2 ∈

Rn,Mf ≥ 0, ν > 0; local norm: ∥d∥x ≜ ⟨∇2 f (x)d, d⟩1/2

 standard SC if ν = 3, v1 = v2

globalization of Newton’s method ⇔ step-size damping:
xk+1 = xk − ᾱk∇2f (x)−1∇f (x), 0 < ᾱk ≤ 1 (damping parameter)

29

Self-concordant optimization (g = 0)

Both pure Newton and GGN algorithms may fail globally
 global properties of Newton’s method are well-established for

(generalized) self-concordant functions
 a convex function f is (Mf , ν)-generalized self-concordant (SC) if∣∣∣〈∇3 f (x)[v1]v2, v2

〉∣∣∣ ≤ Mf ∥v2∥2x∥v1∥
ν−2
x ∥v1∥3−ν ,∀v1, v2 ∈

Rn,Mf ≥ 0, ν > 0; local norm: ∥d∥x ≜ ⟨∇2 f (x)d, d⟩1/2

 standard SC if ν = 3, v1 = v2

globalization of Newton’s method ⇔ step-size damping:
xk+1 = xk − ᾱk∇2f (x)−1∇f (x), 0 < ᾱk ≤ 1 (damping parameter)

29

Self-concordant optimization (g = 0)

Both pure Newton and GGN algorithms may fail globally
 global properties of Newton’s method are well-established for

(generalized) self-concordant functions
 a convex function f is (Mf , ν)-generalized self-concordant (SC) if∣∣∣〈∇3 f (x)[v1]v2, v2

〉∣∣∣ ≤ Mf ∥v2∥2x∥v1∥
ν−2
x ∥v1∥3−ν ,∀v1, v2 ∈

Rn,Mf ≥ 0, ν > 0; local norm: ∥d∥x ≜ ⟨∇2 f (x)d, d⟩1/2

 standard SC if ν = 3, v1 = v2

globalization of Newton’s method ⇔ step-size damping:
xk+1 = xk − ᾱk∇2f (x)−1∇f (x), 0 < ᾱk ≤ 1 (damping parameter)

29

Self-concordant optimization (g = 0)

damped Newton: xk+1 = xk − ᾱk∇2f (x)−1∇f (x)
 affine-invariant local quadratic convergence guarantee
 global convergence guarantee for an appropriately-chosen ᾱk

 for standard SC f [22]: ᾱk = 1
1+Mf ∥∇ f ∥∗xk︸ ︷︷ ︸

Newton decrement

 convergence theory extends for generalized SC functions[23]

 several customized algorithms and robust loss functions arising from
this notion, e.g., in nonsmooth composite optimization, regression
problems and robust statistics, etc....

[22] Nemirovski 2004; Nesterov and Nemirovskii 1994.
[23] Sun and Tran-Dinh 2019.

30

Self-concordant optimization (g = 0)

damped Newton: xk+1 = xk − ᾱk∇2f (x)−1∇f (x)
 affine-invariant local quadratic convergence guarantee
 global convergence guarantee for an appropriately-chosen ᾱk

 for standard SC f [22]: ᾱk = 1
1+Mf ∥∇ f ∥∗xk︸ ︷︷ ︸

Newton decrement

 convergence theory extends for generalized SC functions[23]

 several customized algorithms and robust loss functions arising from
this notion, e.g., in nonsmooth composite optimization, regression
problems and robust statistics, etc....

[22] Nemirovski 2004; Nesterov and Nemirovskii 1994.
[23] Sun and Tran-Dinh 2019.

30

Self-concordant optimization (g = 0)

damped Newton: xk+1 = xk − ᾱk∇2f (x)−1∇f (x)
 affine-invariant local quadratic convergence guarantee
 global convergence guarantee for an appropriately-chosen ᾱk

 for standard SC f [22]: ᾱk = 1
1+Mf ∥∇ f ∥∗xk︸ ︷︷ ︸

Newton decrement

 convergence theory extends for generalized SC functions[23]

 several customized algorithms and robust loss functions arising from
this notion, e.g., in nonsmooth composite optimization, regression
problems and robust statistics, etc....

[22] Nemirovski 2004; Nesterov and Nemirovskii 1994.
[23] Sun and Tran-Dinh 2019.

30

Self-concordant regularization

assume g ̸= 0 is (Mg, ν)-generalized SC
 choose ᾱk = αk

1+Mg∥∇ g∥∗
xk
, 0 < αk ≤ 1

 GGN-SCORE algorithm: xk+1 = xk − ᾱk(J⊤QJ +∇2 g(xk))−1J⊤e
 if m < n,

xk+1 = xk − ᾱk ∇2 g(xk)−1J⊤(Im +QJ ∇2 g(xk)−1J⊤︸ ︷︷ ︸
m×m

)−1e

31

Self-concordant regularization: what we get...

local linear-quadratic convergence guarantee for (strongly) convex
problems[24]
Assume:
 f , g are γl , γa-strongly convex
 f , g have γu, γb-Lipschitz continuous first derivatives
 f , g have γf , γg-Lipschitz continuous second derivatives Hf , Hg

 g is (Mg, 3)-generalized SC (and scaled by λ ≥ 0)

Key Remark
There exist β, β̃,K1 > 0, with Q ≤ K1I , such that ∥e∥ ≤ β, ∥J∥ ≤ β̃,
and hence

∥λI +QJH−1
g JT∥ ≤ λ+ (K/γa), K = K1β̃

2,Hg = ∇2 g

[24] Adeoye and Bemporad 2023a.
32

Self-concordant regularization: what we get...

Theorem (local loss behaviour and suboptimality)
If αk = α =

√
γa

β1
(K + λγa), and under given regularity and unbiasedness

conditions on the GGN matrices and gradients,

E[L(xk+1)] ≤ L(xk)−
(
λω(ζk)
M 2

g
+ γlω

′′(ζ̃k)
2γa

− ξ

)
E∥xk+1 − x∗∥xk+1 ≤ ϑ∥xk − x∗∥xk +

γu
β1
∥xk − x∗∥+

γg
2 ∥xk − x∗∥2

ω(t) ≜ t − ln(1+ t), ζk ≜
Mg

1+ ζ̃k
,

ζ̃k ≜ Mg∥∇ g∥∗xk , ξ ≜
2(γu + λγb)√

γa
, β1 ≜ ββ̃

ϑ ≜ 1+ λ
√
γaβ1(1−Mg∥xk − x∗∥xk)

.

33

Self-concordant regularization: what we get...

non-asymptotic guarantee for the last-iterate convergence of neural
network predictions to the outputs of a given target function[25]
Consider a two-layer neural network:

u 7→ M(u; x) ≜ κ(p)
p∑

i=1
viσ(wiu), (7)

where κ(p) is some scaling that depends on n, e.g., κ(p) = 1/√p.

learning problem (ERM):

min
x∈Rn

L(x) ≜ R̂s(M) + g(x), (8)

where R̂s(M) ≜ 1
m

m∑
i=1

ℓ(M(ui ; x), yi) (assumed strongly convex wrt

M), ℓ : RnL × RnL → R is loss function.

[25] Adeoye, Petersen, and Bemporad 2024.
34

Self-concordant regularization: what we get...

non-asymptotic guarantee for the last-iterate convergence of neural
network predictions to the outputs of a given target function[25]
Consider a two-layer neural network:

u 7→ M(u; x) ≜ κ(p)
p∑

i=1
viσ(wiu), (7)

where κ(p) is some scaling that depends on n, e.g., κ(p) = 1/√p.
learning problem (ERM):

min
x∈Rn

L(x) ≜ R̂s(M) + g(x), (8)

where R̂s(M) ≜ 1
m

m∑
i=1

ℓ(M(ui ; x), yi) (assumed strongly convex wrt

M), ℓ : RnL × RnL → R is loss function.

[25] Adeoye, Petersen, and Bemporad 2024.
34

Self-concordant regularization: what we get...

Assume standard regularity assumptions on the GGN matrices and the
gradient terms.

Theorem (nonasymptotic convergence)

After K ≜
1
ᾱ
log((1+ ∥M0 −M∗∥2)/ϵ) iterations, for any ϵ, ᾱ ∈ (0, 1),

∥MK −M∗∥2 ≤ ϵ

whereM∗ is a target function (e.g., a teacher network).

Theorem (regularized loss evolution)
The “unaugmented” Jk is mCκ(p)-Lipschitz, C constant, and for all k,

L(xk+1) ≤ L(xk)− ξk

where ξk = O
(
β̂2
1 c̄k/β̂4

m

)
is positive, β̂1 ≜ σmax(Jk), β̂m ≜ σmin(Jk)

(augmented).
35

Self-concordant smoothing

constructing an SC g:
 approach: epi-smoothing by infimal convolution[26]: gs(x;µ) =

g□hµ ≜ inf
w∈Rn

{
g(w) + hµ(x − w)

}
, hµ(·) ≜ µh

(
·
µ

)
, µ ∈ P

 consider a parameterized family of regularization kernels
H ≜

{
(x,w) 7→ hµ(x − w) | x,w ∈ Rn, µ ∈ P

}
hµ ∈ H with h(x) ≜

n∑
i=1

φ(xi), lim inf
∥x∥→∞

φ(x)
∥x∥ = +∞ and φ ∈ FMφ,ν

Let ϕs(t;µ) ≜ (ϕ□φµ)(t); then gs ≜ g□hµ ≡
n∑

i=1
ϕs(xi ;µ) is

(Mg, ν)-generalized SC![27]

[26] Burke and Hoheisel 2017.
[27] Adeoye and Bemporad 2023b

36

Self-concordant smoothing

4 2 0 2 4
t

0

1

2

3

4

5
t 1

s(t; 0.2)
s(t; 0.5)
s(t; 1.0)

4 2 0 2 4
t

0

1

2

3

4

5
t 1

s(t; 0.2)
s(t; 0.5)
s(t; 1.0)

Generalized self-concordant smoothing of ∥ · ∥1 with φ(t) =
√

1+|t|2 − 1 (left)

and φ(t) = 1
2

[
√
1+ 4t2 − 1+ log

(√
1+4t2−1
2t2

)]
(right). The smooth

approximation is shown for µ = 0.2, 0.5, 1.0.

Julia package
All implemented in a Julia package,

SelfConcordantSmoothOptimization.jl
A Python port is available:

https://github.com/adeyemiadeoye/pySCSOpt

37

https://github.com/adeyemiadeoye/SelfConcordantSmoothOptimization.jl
https://github.com/adeyemiadeoye/pySCSOpt

Self-concordant smoothing in proximal quasi-Newton
methods

regularize

a local

characterization

of Newton-type

optimality

classical

Newton-type

optimality

difficult, expensive simple (prox calculus), usually cheaper

38

Self-concordant smoothing in proximal quasi-Newton
methods

characterization
of Newton-type

optimality

classical
Newton-type
optimality

difficult, expensive simple (prox calculus), usually cheaper

each gµs is εµ-optimal for g (ε-argmin g ≜ {x | g(x) ≤ inf g + ε})

ideally, one wants gs with parametrization set {gµs }µ>0 satisfying
lim sup

µ
(argmin gµs) ⊂ argmin g

“every cluster point of the minimizers of {gµs }µ>0 is a minimizer of g”[a]

[a] Rockafellar and Wets 2009.

39

A proximal GGN algorithm

Algorithm Prox-GGN-SCORE

Require: x0 ∈ Rn, f , g, gs ∈ SµMg,ν
, M, {ui , yi}mi=1 with yi ∈ Rny ,

α ∈ (0, 1]
1: for k = 0, . . . do
2: Hg ← ∇2 gs(xk); ηk ←

∥∥∇ gs(xk)
∥∥∗
Hg

▷ NOTE: Hg is diagonal
3: ᾱk ← α

1+Mgηk

4: if m + ny ≤ n then
5: δggnk = −H−1

g J⊤
k (Im +QkJkH−1

g J⊤
k)−1uk

6: else
7: δggnk = −(J⊤

k QkJk +Hg)−1J⊤
k uk

8: end if
9: xk+1 ← proxHg

αg(xk + ᾱkδ
ggn
k) ▷ simplified by prox-calculus[28]

10: end for

[28] Becker, Fadili, and Ochs 2019.
40

Convergence properties

assumptions:
 f is convex and f ∈ C2,2Lf

(Rn)

 ρ0In ≤ ∇2 f (x∗) ≤ LIn, ρIn ≤ ∇2 gs(x∗) ≤ L0In locally with
L ≥ ρ0 > 0 and L0 ≥ ρ > 0

 g ∈ Γ0(Rn)
 gs ∈ SµMg,ν

41

Convergence properties

Theorem
Starting from an arbitrary point, Prox-GGN-SCORE converges to a
solution, with L evolving as

L(xk+1) ≤ L(xk)− (Lf /6)∥xk+1 − xk∥3

42

Convergence properties

dν(x, y) ≜
{
Mg∥y − x∥ if ν = 2,(
ν
2 − 1

)
Mg∥y − x∥3−ν

2 ∥y − x∥ν−2
x if ν > 2

ων(τ) ≜



exp(τ)−τ−1
τ2 if ν = 2,

−τ−ln(1−τ)
τ2 if ν = 3,

(1−τ) ln(1−τ)+τ
τ2 if ν = 4,(

ν−2
4−ν

)
1
τ

[
ν−2

2(3−ν)τ

(
(1− τ) 2(3−ν)

2−ν − 1
)
− 1
]

otherwise

Rν(τ) ≜


(3
2 + τ

3
)
exp(τ) if ν = 2,

1−(1−τ)
4−ν
ν−2 −(4−ν

ν−2)τ(1−τ)
4−ν
ν−2

(4−ν
ν−2)τ2(1−τ)

4−ν
ν−2

if ν ∈ (2, 3]

ω̄ν(τ) ≜


2 exp(τ

2)−2
τ if ν = 2,

− ln(1−τ)
τ if ν = 3,(

ν−2
ν−3

)
1−(1−τ)

ν−3
ν−2

τ otherwise

43

Convergence properties

local assumptions:
 ∥Jkv∥ ≥ β1∥v∥, β1 > 0, for any v ∈ Rn

∥∥ef (xk)∥∥ ≤ β2, ∥Qf (xk)∥ ≤ β3 for some β2, β3 > 0

let β̃ ≜ β2β3, αk ≡ α ∈ (0, 1], λk ≜ 1+Mgων(−dν(x∗, xk))∥xk − x∗∥xk ,
ϑk ≜

(
λk−αk

λk

)
ω̄ν(dν(x∗, xk)) + Lf

2√ρ , Rk ≜ Rν(dν(x∗, xk))dν(x∗, xk)

Theorem (local suboptimality of Prox-GGN-SCORE iterates)
Starting from x0 ∈ Er(x∗), if dν(x∗, xk) < 1, then
∥xk+1 − x∗∥x∗ ≤ L(λk−αk)

λk
√
ρ + β̃∥xk−x∗∥√

ρ + Rk∥xk − x∗∥x∗ + ϑk∥xk − x∗∥2

44

Sparse group lasso test

0 1 2 3 4
time [s]

100

10 2

10 4

10 6

10 8

M
SE

m = 500, n = 2000
Prox-GGN-SCORE
SSNAL
Prox-Grad
BCD

0 10 20 30 40
time [s]

100

10 2

10 4

10 6

M
SE

m = 500, n = 4000
Prox-GGN-SCORE
SSNAL
Prox-Grad
BCD

0 5 10 15 20
time [s]

100

10 2

10 4

10 6

M
SE

m = 1000, n = 5000
Prox-GGN-SCORE
SSNAL
Prox-Grad
BCD

0 30 60 90 120
time [s]

100

10 2

10 4

10 6

M
SE

m = 1000, n = 7000
Prox-GGN-SCORE
SSNAL
Prox-Grad
BCD

min
x∈Rn

1
2∥Ax − y∥2︸ ︷︷ ︸

=:f (x)

+β∥x∥1 + βG

∑
j∈G

ωj∥xj∥︸ ︷︷ ︸
=:g(x)

45

Learning the FNN with GGN-SCORE

min
θu≡z̄

f̄ (θu) + λr̄ r̄(θu),; nd = ny · nb; nb = mini-batch size

z̄k+1 = z̄k −
σ

1+Mr̄ η̄k
H̄−1

k J̄kB̄−1
k ēk , B̄k ≜ λr̄ I+ Q̄k J̄kH̄−1

k J̄⊤
k ,

J̄⊤
k =

[
J⊤
ŷ λr̄ ḡk

]
, Q̄k =

[
Qf̄ 0
0 0

]
, ēk =

[
gf̄
1

]
,

H̄k ∈ Rnθu×nθu : Hessian of r̄ with respect to θu, Jŷ ∈ Rnd×nθu :
Jacobian of ŷk with respect to θu, ḡk : gradient of r̄ with respect to θu,
gf̄ ∈ Rnd : residual vector defined as the gradient of f̄ with respect to ŷk ,
Qf̄ ∈ Rnd×nd : Hessian of f̄ with respect to ŷk .

choose: 0 < σ ≤ 1, η̄k =
〈
ḡk , H̄−1

k ḡk
〉1/2

, and Mr̄ ≥ 0 is associated with
r̄ .
use: B̄−1

k ≈ B
¯k with B

¯k ∈ Rnθu×nθu with entries b
¯i,j

= δ̄i,j/b̄i,i , where
δ̄i,j is the Kronecker delta function and b̄i,i are the diagonal entries of B̄k .

46

Full RCNN simulation results (mountain car)

0 250 500 750 1000

0.8

0.6

0.4

0.2 environment position
identified position

0 250 500 750 1000
step

0.060.030.000.030.06

er
ro

r

3 6 9 12 15
batch

0.55

0.60

0.65

0.70

av
er

ag
e

re
wa

rd

Left: DCRNN identified model in stage I. Right: Stage II FNN training.

0 50 100 150 200
step

1.0

0.5

0.0

0.5

1.0
u

9800 9850 9900 9950 10000
step

1.0

0.5

0.0

0.5

1.0
u

0 100 200 300 400
episode

1.0

1.5

2.0

2.5

3.0

3.5

su
m

 o
f r

ew
ar

ds

0 100 200 300 400
episode

15

20

25

30

35

to
ta

l s
te

ps

Real-time control performance. Gr = [1, 0], Rt = logistic10(ŷt − 0.5),
logistic10(x) ≜ 1

1+e−10x , σu = tanh (+ bucketing for inference), σh = relu.
47

Full RCNN simulation results (ethylene oxidation)

0 100 200 300
0.0

0.5

1.0

1.5

2.0
ytrue

1
ytrue

2
ytrue

3
ytrue

4

ypred
1

ypred
2

ypred
3

ypred
4

0 250 500 750 1000
dimensionless time

0.06
0.03
0.00
0.03
0.06

er
ro

r

3 6 9 12 15
batch

0.0

0.5

1.0

1.5

M
SE

Left: DCRNN identified model in stage I. Right: Stage II FNN training.

0 50 100 150 200
0.99700
0.99725
0.99750
0.99775
0.99800

y1s

y1

0 50 100 150 2000.4
0.6
0.8
1.0
1.2

y2s

y2

0 50 100 150 200
0.05
0.10
0.15
0.20

y3s

y3

0 50 100 150 200
dimensionless time

1.0020
1.0025
1.0030
1.0035
1.0040

y4s

y4

0 50 100 150 200
0.3550
0.3575
0.3600
0.3625
0.3650
0.3675 u

0 50 100 150 200
dimensionless time

0.5

0.6

0.7

0.8
u

0 50 100 150 200
dimensionless time

10 4

10 3

10 2

10 1

100

R t

Real-time control performance. ; Gr = [1, 1, 1, 1], Rt = (ŷt − yref), σu = tanh,
σh = relu. 48

Conclusions

 designed and analyzed quasi-Newton optimization algorithms within
a learning and control context

 addressed structural issues with RNNs
 proposed “self-concordant regularization” for quasi-Newton methods
 featured an approximation technique in GGN-SCORE that’s useful

for overparameterized models and mini-batch updates
 achieved faster convergence and better prediction quality than

first-order methods
 proved the first (nonasymptotic, last-iterate) convergence result for

GGN in optimizing neural networks with explicit regularization

49

Conclusions

Future directions:
 extensions to explicitly handle more general constraints
 automatic or adaptive selection of optimal smoothing parameters in

the proximal SCORE framework
 application and/or analysis of online/stochastic versions of the

proximal SCORE framework
 explore parallel and distributed versions of quasi-Newton methods
 improve/solidify theoretical guarantees on the newly proposed

techniques

50

Conclusions
Future directions:

 uncertainty quantification in
neural network predictions, e.g.,
(probabilistic) Bayesian neural
networks, for reliability and
robustness

 hybrid models (data + physics)
for improved interpretability
and robustness

"optimize to learn"

"learn to optimize"

data

datadomain-specific

optimization, machine learning

physics-based/dynamic model

robust, interpretable, reliable,

uncertainty-quantified

model+

 applications: large-scale industrial and engineering problems, e.g.,
computational fluid dynamics, optimal experimental design, optimal
power flow, . . .

51

Thank you!

52

References

Adeoye, Adeyemi D and Alberto Bemporad (2023a). “SCORE:
approximating curvature information under self-concordant
regularization”. In: Computational Optimization and Applications
86.2, pp. 599–626.
— (2023b). “Self-concordant Smoothing for Convex Composite
Optimization”. In: arXiv preprint arXiv:2309.01781.
Adeoye, Adeyemi D. and Alberto Bemporad (2025). “An Inexact
Sequential Quadratic Programming Method for Learning and Control
of Recurrent Neural Networks”. In: IEEE Transactions on Neural
Networks and Learning Systems 36.2, pp. 2762–2776. doi:
10.1109/TNNLS.2024.3354855.
Adeoye, Adeyemi D, Philipp Christian Petersen, and
Alberto Bemporad (2024). “Regularized Gauss-Newton for Optimizing
Overparameterized Neural Networks”. In: arXiv preprint
arXiv:2404.14875.

53

https://doi.org/10.1109/TNNLS.2024.3354855

References

Atiya, Amir F and Alexander G Parlos (2000). “New results on
recurrent network training: unifying the algorithms and accelerating
convergence”. In: IEEE transactions on neural networks 11.3,
pp. 697–709.
Becker, Stephen, Jalal Fadili, and Peter Ochs (2019). “On
quasi-Newton forward-backward splitting: proximal calculus and
convergence”. In: SIAM Journal on Optimization 29.4,
pp. 2445–2481.
Bellman, Richard (1952). “On the theory of dynamic programming”.
In: Proceedings of the national Academy of Sciences 38.8,
pp. 716–719.
Bemporad, Alberto (2022). “Recurrent neural network training with
convex loss and regularization functions by extended Kalman
filtering”. In: IEEE Transactions on Automatic Control 68.9,
pp. 5661–5668.

54

References

Bemporad, Alberto (2023). “Training recurrent neural networks by
sequential least squares and the alternating direction method of
multipliers”. In: Automatica 156, p. 111183.
Bengio, Yoshua, Patrice Simard, and Paolo Frasconi (1994).
“Learning long-term dependencies with gradient descent is difficult”.
In: IEEE transactions on neural networks 5.2, pp. 157–166.
Berner, Julius et al. (2021). “The modern mathematics of deep
learning”. In: arXiv preprint arXiv:2105.04026 78.
Burke, James V and Tim Hoheisel (2017). “Epi-convergence
properties of smoothing by infimal convolution”. In: Set-Valued and
Variational Analysis 25, pp. 1–23.
Deng, Jia et al. (2009). “Imagenet: A large-scale hierarchical image
database”. In: 2009 IEEE conference on computer vision and pattern
recognition. Ieee, pp. 248–255.
DeVore, Ronald A (1998). “Nonlinear approximation”. In: Acta
numerica 7, pp. 51–150.

55

References

Duncan, William Jolly (1944). “LXXVIII. Some devices for the
solution of large sets of simultaneous linear equations: With an
appendix on the reciprocation of partitioned matrices”. In: The
London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science 35.249, pp. 660–670.
Guttman, Louis (1946). “Enlargement methods for computing the
inverse matrix”. In: The annals of mathematical statistics,
pp. 336–343.
Ha, David and Jürgen Schmidhuber (2018). “Recurrent world models
facilitate policy evolution”. In: Advances in neural information
processing systems 31.
Hochreiter, Sepp (1998). “Recurrent neural net learning and
vanishing gradient”. In: International Journal Of Uncertainity,
Fuzziness and Knowledge-Based Systems 6.2, pp. 107–116.

56

References

Johnston, Barbara M et al. (2004). “Non-Newtonian blood flow in
human right coronary arteries: steady state simulations”. In: Journal
of biomechanics 37.5, pp. 709–720.
— (2006). “Non-Newtonian blood flow in human right coronary
arteries: transient simulations”. In: Journal of biomechanics 39.6,
pp. 1116–1128.
Krizhevsky, Alex, Geoffrey Hinton, et al. (2009). “Learning multiple
layers of features from tiny images”. In.
LeCun, Yann et al. (1998). “Gradient-based learning applied to
document recognition”. In: Proceedings of the IEEE 86.11,
pp. 2278–2324.
McCloud, Scott (1993). Understanding Comics: The Invisible Art.
Tundra Publishing.
Nemirovski, Arkadi (2004). “Interior point polynomial time methods
in convex programming”. In: Lecture notes 42.16, pp. 3215–3224.

57

References

Nesterov, Yurii and Arkadii Nemirovskii (1994). Interior-point
polynomial algorithms in convex programming. SIAM.
Novak, Erich and Henryk Woźniakowski (2009). “Approximation of
infinitely differentiable multivariate functions is intractable”. In:
Journal of Complexity 25.4, pp. 398–404.
Panier, Eliane R and André L Tits (1991). “Avoiding the Maratos
effect by means of a nonmonotone line search I. General constrained
problems”. In: SIAM Journal on Numerical Analysis 28.4,
pp. 1183–1195.
Powell, Michael JD (1978a). “A fast algorithm for nonlinearly
constrained optimization calculations”. In: Numerical analysis.
Springer, pp. 144–157.
— (1978b). “The convergence of variable metric methods for
nonlinearly constrained optimization calculations”. In: Nonlinear
programming 3. Elsevier, pp. 27–63.

58

References

Rockafellar, R Tyrrell and Roger J-B Wets (2009). Variational
analysis. Vol. 317. Springer Science & Business Media.
Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams
(1986). “Learning representations by back-propagating errors”. In:
nature 323.6088, pp. 533–536.
Saad, Youcef and Martin H Schultz (1986). “GMRES: A generalized
minimal residual algorithm for solving nonsymmetric linear systems”.
In: SIAM Journal on scientific and statistical computing 7.3,
pp. 856–869.
Sun, Tianxiao and Quoc Tran-Dinh (2019). “Generalized
self-concordant functions: a recipe for Newton-type methods”. In:
Mathematical Programming 178.1-2, pp. 145–213.
Tumblr, Meme Engine (2012). More thoughts from Understanding
Comics by Scott McCloud. Retrieved from Meme Engine Tumblr.

59

References

Zimmermann, Hans-Georg et al. (2006). “Identification and
forecasting of large dynamical systems by dynamical consistent neural
networks”. In: New Directions in Statistical Signal Processing: From
Systems to Brain, pp. 203–242.

60

	
	Introduction: Neural networks for function approximation
	RNN for Markovian state-space dynamics
	DCRNN: An RNN for Markovian state-space approximation
	iSQPRL: An inexact SQP approach for recurrent learning
	Recurrent-Control Neural Network
	Generalized Gauss-Newton with self-concordant regularization
	Conclusions and future directions
	References

